Your browser doesn't support javascript.
loading
Severe Dirac Mass Gap Suppression in Sb2Te3-Based Quantum Anomalous Hall Materials.
Chong, Yi Xue; Liu, Xiaolong; Sharma, Rahul; Kostin, Andrey; Gu, Genda; Fujita, K; Davis, J C Séamus; Sprau, Peter O.
Afiliação
  • Chong YX; LASSP, Department of Physics, Cornell University, Ithaca, New York 14853, United States.
  • Liu X; CMPMS Department, Brookhaven National Laboratory, Upton, New York 11973, United States.
  • Sharma R; LASSP, Department of Physics, Cornell University, Ithaca, New York 14853, United States.
  • Kostin A; Kavli Institute at Cornell, Cornell University, Ithaca, New York 14853, United States.
  • Gu G; LASSP, Department of Physics, Cornell University, Ithaca, New York 14853, United States.
  • Fujita K; CMPMS Department, Brookhaven National Laboratory, Upton, New York 11973, United States.
  • Davis JCS; LASSP, Department of Physics, Cornell University, Ithaca, New York 14853, United States.
  • Sprau PO; CMPMS Department, Brookhaven National Laboratory, Upton, New York 11973, United States.
Nano Lett ; 20(11): 8001-8007, 2020 Nov 11.
Article em En | MEDLINE | ID: mdl-32985892
ABSTRACT
The quantum anomalous Hall (QAH) effect appears in ferromagnetic topological insulators (FMTIs) when a Dirac mass gap opens in the spectrum of the topological surface states (SSs). Unaccountably, although the mean mass gap can exceed 28 meV (or ∼320 K), the QAH effect is frequently only detectable at temperatures below 1 K. Using atomic-resolution Landau level spectroscopic imaging, we compare the electronic structure of the archetypal FMTI Cr0.08(Bi0.1Sb0.9)1.92Te3 to that of its nonmagnetic parent (Bi0.1Sb0.9)2Te3, to explore the cause. In (Bi0.1Sb0.9)2Te3, we find spatially random variations of the Dirac energy. Statistically equivalent Dirac energy variations are detected in Cr0.08(Bi0.1Sb0.9)1.92Te3 with concurrent but uncorrelated Dirac mass gap disorder. These two classes of SS electronic disorder conspire to drastically suppress the minimum mass gap to below 100 µeV for nanoscale regions separated by <1 µm. This fundamentally limits the fully quantized anomalous Hall effect in Sb2Te3-based FMTI materials to very low temperatures.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nano Lett Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nano Lett Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos