Your browser doesn't support javascript.
loading
Thermomechanical Nanostraining of Two-Dimensional Materials.
Liu, Xia; Sachan, Amit Kumar; Howell, Samuel Tobias; Conde-Rubio, Ana; Knoll, Armin W; Boero, Giovanni; Zenobi, Renato; Brugger, Jürgen.
Afiliação
  • Liu X; Microsystems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
  • Sachan AK; Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
  • Howell ST; Microsystems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
  • Conde-Rubio A; Microsystems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
  • Knoll AW; IBM Research - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.
  • Boero G; Microsystems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
  • Zenobi R; Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
  • Brugger J; Microsystems Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
Nano Lett ; 20(11): 8250-8257, 2020 Nov 11.
Article em En | MEDLINE | ID: mdl-33030906
Local bandgap tuning in two-dimensional (2D) materials is of significant importance for electronic and optoelectronic devices but achieving controllable and reproducible strain engineering at the nanoscale remains a challenge. Here, we report on thermomechanical nanoindentation with a scanning probe to create strain nanopatterns in 2D transition metal dichalcogenides and graphene, enabling arbitrary patterns with a modulated bandgap at a spatial resolution down to 20 nm. The 2D material is in contact via van der Waals interactions with a thin polymer layer underneath that deforms due to the heat and indentation force from the heated probe. Specifically, we demonstrate that the local bandgap of molybdenum disulfide (MoS2) is spatially modulated up to 10% and is tunable up to 180 meV in magnitude at a linear rate of about -70 meV per percent of strain. The technique provides a versatile tool for investigating the localized strain engineering of 2D materials with nanometer-scale resolution.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nano Lett Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Suíça País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nano Lett Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Suíça País de publicação: Estados Unidos