Your browser doesn't support javascript.
loading
A Matrix-free Likelihood Method for Exploratory Factor Analysis of High-dimensional Gaussian Data.
Dai, Fan; Dutta, Somak; Maitra, Ranjan.
Afiliação
  • Dai F; Department of Statistics, Iowa State University, Ames, Iowa.
  • Dutta S; Department of Statistics, Iowa State University, Ames, Iowa.
  • Maitra R; Department of Statistics, Iowa State University, Ames, Iowa.
J Comput Graph Stat ; 29(3): 675-680, 2020.
Article em En | MEDLINE | ID: mdl-33041614
This paper proposes a novel profile likelihood method for estimating the covariance parameters in exploratory factor analysis of high-dimensional Gaussian datasets with fewer observations than number of variables. An implicitly restarted Lanczos algorithm and a limited-memory quasi-Newton method are implemented to develop a matrix-free framework for likelihood maximization. Simulation results show that our method is substantially faster than the expectation-maximization solution without sacrificing accuracy. Our method is applied to fit factor models on data from suicide attempters, suicide ideators and a control group.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: J Comput Graph Stat Ano de publicação: 2020 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: J Comput Graph Stat Ano de publicação: 2020 Tipo de documento: Article País de publicação: Estados Unidos