Your browser doesn't support javascript.
loading
Exploring and applying the substrate promiscuity of a C-glycosyltransferase in the chemo-enzymatic synthesis of bioactive C-glycosides.
Xie, Kebo; Zhang, Xiaolin; Sui, Songyang; Ye, Fei; Dai, Jungui.
Afiliação
  • Xie K; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical Colleg
  • Zhang X; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical Colleg
  • Sui S; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical Colleg
  • Ye F; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical Colleg
  • Dai J; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical Colleg
Nat Commun ; 11(1): 5162, 2020 10 14.
Article em En | MEDLINE | ID: mdl-33056984
ABSTRACT
Bioactive natural C-glycosides are rare and chemical C-glycosylation faces challenges while enzymatic C-glycosylation catalyzed by C-glycosyltransferases provides an alternative way. However, only a small number of C-glycosyltransferases have been found, and most of the discovered C-glycosyltransferases prefer to glycosylate phenols with an acyl side chain. Here, a promiscuous C-glycosyltransferase, AbCGT, which is capable of C-glycosylating scaffolds lacking acyl groups, is identified from Aloe barbadensis. Based on the substrate promiscuity of AbCGT, 16 C-glycosides with inhibitory activity against sodium-dependent glucose transporters 2 are chemo-enzymatically synthesized. The C-glycoside 46a shows hypoglycemic activity in diabetic mice and is biosynthesized with a cumulative yield on the 3.95 g L‒1 scale. In addition, the key residues involved in the catalytic selectivity of AbCGT are explored. These findings suggest that AbCGT is a powerful tool in the synthesis of lead compounds for drug discovery and an example for engineering the catalytic selectivity of C-glycosyltransferases.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Glicosiltransferases / Aloe / Inibidores do Transportador 2 de Sódio-Glicose / Glicosídeos Tipo de estudo: Prognostic_studies Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Glicosiltransferases / Aloe / Inibidores do Transportador 2 de Sódio-Glicose / Glicosídeos Tipo de estudo: Prognostic_studies Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2020 Tipo de documento: Article