Your browser doesn't support javascript.
loading
Understanding deep learning in land use classification based on Sentinel-2 time series.
Campos-Taberner, Manuel; García-Haro, Francisco Javier; Martínez, Beatriz; Izquierdo-Verdiguier, Emma; Atzberger, Clement; Camps-Valls, Gustau; Gilabert, María Amparo.
Afiliação
  • Campos-Taberner M; Environmental Remote Sensing group (UV-ERS), Universitat de València, 46100, Burjassot, Valencia, Spain. manuel.campos@uv.es.
  • García-Haro FJ; Environmental Remote Sensing group (UV-ERS), Universitat de València, 46100, Burjassot, Valencia, Spain.
  • Martínez B; Environmental Remote Sensing group (UV-ERS), Universitat de València, 46100, Burjassot, Valencia, Spain.
  • Izquierdo-Verdiguier E; Institute of Geomatics, University of Natural Resources and Life Sciences, Vienna (BOKU), Peter Jordan Str. 82, 1190, Vienna, Austria.
  • Atzberger C; Institute of Geomatics, University of Natural Resources and Life Sciences, Vienna (BOKU), Peter Jordan Str. 82, 1190, Vienna, Austria.
  • Camps-Valls G; Image Processing Laboratory (IPL), Universitat de València, 46980, Paterna, Spain.
  • Gilabert MA; Environmental Remote Sensing group (UV-ERS), Universitat de València, 46100, Burjassot, Valencia, Spain.
Sci Rep ; 10(1): 17188, 2020 10 14.
Article em En | MEDLINE | ID: mdl-33057052
The use of deep learning (DL) approaches for the analysis of remote sensing (RS) data is rapidly increasing. DL techniques have provided excellent results in applications ranging from parameter estimation to image classification and anomaly detection. Although the vast majority of studies report precision indicators, there is a lack of studies dealing with the interpretability of the predictions. This shortcoming hampers a wider adoption of DL approaches by a wider users community, as model's decisions are not accountable. In applications that involve the management of public budgets or policy compliance, a better interpretability of predictions is strictly required. This work aims to deepen the understanding of a recurrent neural network for land use classification based on Sentinel-2 time series in the context of the European Common Agricultural Policy (CAP). This permits to address the relevance of predictors in the classification process leading to an improved understanding of the behaviour of the network. The conducted analysis demonstrates that the red and near infrared Sentinel-2 bands convey the most useful information. With respect to the temporal information, the features derived from summer acquisitions were the most influential. These results contribute to the understanding of models used for decision making in the CAP to accomplish the European Green Deal (EGD) designed in order to counteract climate change, to protect biodiversity and ecosystems, and to ensure a fair economic return for farmers.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Sci Rep Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Espanha País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Sci Rep Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Espanha País de publicação: Reino Unido