Your browser doesn't support javascript.
loading
Improved pharmacokinetic and biodistribution of 5-fluorouracil loaded biomimetic nanoerythrocytes decorated nanocarriers for liver cancer treatment.
AlQahtani, Saeed A; Harisa, Gamaleldin I; Alomrani, Abdullah H; Alanazi, Fars K; Badran, Mohamed M.
Afiliação
  • AlQahtani SA; Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Saudi Food and Drug Authori
  • Harisa GI; Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Department of Biochemistry,
  • Alomrani AH; Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Nanobiotechnology Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
  • Alanazi FK; Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Kayyali Chair for Pharmaceutical Industry, Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
  • Badran MM; Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Department of Pharmaceutics, College of Pharmacy, Al-Azhar University Cairo, Egypt. Electronic address: mbadran@ksu.edu.sa.
Colloids Surf B Biointerfaces ; 197: 111380, 2021 Jan.
Article em En | MEDLINE | ID: mdl-33068824
ABSTRACT
Nanoerythrocytes membrane (NEs) has recently been used to improve pharmacokinetics and biodistribution for successful drug therapy. NEs intended to enhance the drug targeting due to immune evasion and long circulation. In this work, NEs could serve as efficient 5- fluorouracil (5-FU) carriers to target liver cells. NEs decorated 5-FU-loaded chitosan coated-poly (lactide-co-glycolic acid) nanoparticles (5-FU-C-NPs-NEs), chitosomes (5-FU-C-LPs-NEs) and 5-FU-NEs were prepared by hypotonic lysis and extrusion procedures. Moreover, 5-FU loaded-chitosan coated 5-FU-NPs (5-FU-C-NPs) and chitosomes (5-FU-C-LPs) for the compared issues were prepared. They were characterized in terms of particle size, encapsulation efficiency (EE), membrane protein content, phosphatidylserine exposure, surface morphology, and in vitro release profiles. Also, their cytotoxic efficacy was determined. Furthermore, pharmacokinetics and biodistribution studies were investigated for optimized formulation. The results revealed that 5-FU-C-NPs-NEs have narrow particle size distribution, desirable EE%, and retained the erythrocyte membrane properties as confirmed by polyacrylamide gel electrophoresis (SDS-PAGE). Additionally, it displayed a sustained release profile up to 72 h of 5-FU-C-NPs-NEs compared to other formulations. In comparison to 5-FU solution and 5-FU-C-NPs, 5-FU-C-NPs-NEs extended the drug release time in vivo with highly uptake by the liver. These results suggest that the 5-FU-C-NPs-NEs could be used to deliver 5-FU and enhance its targetability to liver cancer.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas / Neoplasias Hepáticas Limite: Humans Idioma: En Revista: Colloids Surf B Biointerfaces Assunto da revista: QUIMICA Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Nanopartículas / Neoplasias Hepáticas Limite: Humans Idioma: En Revista: Colloids Surf B Biointerfaces Assunto da revista: QUIMICA Ano de publicação: 2021 Tipo de documento: Article