Your browser doesn't support javascript.
loading
Parallel Social Information Processing Circuits Are Differentially Impacted in Autism.
Lewis, Eastman M; Stein-O'Brien, Genevieve L; Patino, Alejandra V; Nardou, Romain; Grossman, Cooper D; Brown, Matthew; Bangamwabo, Bidii; Ndiaye, Ndeye; Giovinazzo, Daniel; Dardani, Ian; Jiang, Connie; Goff, Loyal A; Dölen, Gül.
Afiliação
  • Lewis EM; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School
  • Stein-O'Brien GL; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Division of Biostatistics and Bioinfor
  • Patino AV; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School
  • Nardou R; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School
  • Grossman CD; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School
  • Brown M; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
  • Bangamwabo B; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
  • Ndiaye N; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
  • Giovinazzo D; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
  • Dardani I; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Jiang C; Cell and Molecular Biology Group, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA.
  • Goff LA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Department of Genetic Medicine, Johns Hopkins
  • Dölen G; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Brain Science Institute, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA; The Kavli Neuroscience Discovery Institute, Johns Hopkins University, School
Neuron ; 108(4): 659-675.e6, 2020 11 25.
Article em En | MEDLINE | ID: mdl-33113347
ABSTRACT
Parallel processing circuits are thought to dramatically expand the network capabilities of the nervous system. Magnocellular and parvocellular oxytocin neurons have been proposed to subserve two parallel streams of social information processing, which allow a single molecule to encode a diverse array of ethologically distinct behaviors. Here we provide the first comprehensive characterization of magnocellular and parvocellular oxytocin neurons in male mice, validated across anatomical, projection target, electrophysiological, and transcriptional criteria. We next use novel multiple feature selection tools in Fmr1-KO mice to provide direct evidence that normal functioning of the parvocellular but not magnocellular oxytocin pathway is required for autism-relevant social reward behavior. Finally, we demonstrate that autism risk genes are enriched in parvocellular compared with magnocellular oxytocin neurons. Taken together, these results provide the first evidence that oxytocin-pathway-specific pathogenic mechanisms account for social impairments across a broad range of autism etiologies.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Comportamento Social / Ocitocina / Proteína do X Frágil da Deficiência Intelectual / Transtorno do Espectro Autista / Neurônios Tipo de estudo: Prognostic_studies Aspecto: Determinantes_sociais_saude Limite: Animals Idioma: En Revista: Neuron Assunto da revista: NEUROLOGIA Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Comportamento Social / Ocitocina / Proteína do X Frágil da Deficiência Intelectual / Transtorno do Espectro Autista / Neurônios Tipo de estudo: Prognostic_studies Aspecto: Determinantes_sociais_saude Limite: Animals Idioma: En Revista: Neuron Assunto da revista: NEUROLOGIA Ano de publicação: 2020 Tipo de documento: Article