Your browser doesn't support javascript.
loading
Chemical Reactivity of Supported ZnO Clusters: Undercoordinated Zinc and Oxygen Atoms as Active Sites.
Yu, Xiaojuan; Roth, Jannik P; Wang, Junjun; Sauter, Eric; Nefedov, Alexei; Heißler, Stefan; Pacchioni, Gianfranco; Wang, Yuemin; Wöll, Christof.
Afiliação
  • Yu X; Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, 76344, Germany.
  • Roth JP; Dipartimento di Scienza dei Materiali, Università Milano-Bicocca, Via R. Cozzi 55, 20125, Milano, Italy.
  • Wang J; Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, 76344, Germany.
  • Sauter E; Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, 76344, Germany.
  • Nefedov A; Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, 76344, Germany.
  • Heißler S; Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, 76344, Germany.
  • Pacchioni G; Dipartimento di Scienza dei Materiali, Università Milano-Bicocca, Via R. Cozzi 55, 20125, Milano, Italy.
  • Wang Y; Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, 76344, Germany.
  • Wöll C; Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, 76344, Germany.
Chemphyschem ; 21(23): 2553-2564, 2020 Dec 02.
Article em En | MEDLINE | ID: mdl-33118300
ABSTRACT
The growth of ZnO clusters supported by ZnO-bilayers on Ag(111) and the interaction of these oxide nanostructures with water have been studied by a multi-technique approach combining temperature-dependent infrared reflection absorption spectroscopy (IRRAS), grazing-emission X-ray photoelectron spectroscopy, and density functional theory calculations. Our results reveal that the ZnO bilayers exhibiting graphite-like structure are chemically inactive for water dissociation, whereas small ZnO clusters formed on top of these well-defined, yet chemically passive supports show extremely high reactivity - water is dissociated without an apparent activation barrier. Systematic isotopic substitution experiments using H2 16 O/D2 16 O/D2 18 O allow identification of various types of acidic hydroxyl groups. We demonstrate that a reliable characterization of these OH-species is possible via co-adsorption of CO, which leads to a red shift of the OD frequency due to the weak interaction via hydrogen bonding. The theoretical results provide atomic-level insight into the surface structure and chemical activity of the supported ZnO clusters and allow identification of the presence of under-coordinated Zn and O atoms at the edges and corners of the ZnO clusters as the active sites for H2 O dissociation.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chemphyschem Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chemphyschem Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Alemanha