Systematic identification of cis-regulatory variants that cause gene expression differences in a yeast cross.
Elife
; 92020 11 12.
Article
em En
| MEDLINE
| ID: mdl-33179598
Sequence variation in regulatory DNA alters gene expression and shapes genetically complex traits. However, the identification of individual, causal regulatory variants is challenging. Here, we used a massively parallel reporter assay to measure the cis-regulatory consequences of 5832 natural DNA variants in the promoters of 2503 genes in the yeast Saccharomyces cerevisiae. We identified 451 causal variants, which underlie genetic loci known to affect gene expression. Several promoters harbored multiple causal variants. In five promoters, pairs of variants showed non-additive, epistatic interactions. Causal variants were enriched at conserved nucleotides, tended to have low derived allele frequency, and were depleted from promoters of essential genes, which is consistent with the action of negative selection. Causal variants were also enriched for alterations in transcription factor binding sites. Models integrating these features provided modest, but statistically significant, ability to predict causal variants. This work revealed a complex molecular basis for cis-acting regulatory variation.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Saccharomyces cerevisiae
/
Regulação Fúngica da Expressão Gênica
/
Proteínas de Saccharomyces cerevisiae
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
Idioma:
En
Revista:
Elife
Ano de publicação:
2020
Tipo de documento:
Article
País de afiliação:
Estados Unidos
País de publicação:
Reino Unido