Your browser doesn't support javascript.
loading
Precision population analytics: population management at the point-of-care.
Tang, Paul C; Miller, Sarah; Stavropoulos, Harry; Kartoun, Uri; Zambrano, John; Ng, Kenney.
Afiliação
  • Tang PC; Stanford Clinical Excellence Research Center, Stanford University, Stanford, California, USA.
  • Miller S; IBM Research, Cambridge, Massachusetts, USA.
  • Stavropoulos H; Center for Computational Health, IBM Research, Cambridge, Massachusetts, USA.
  • Kartoun U; Center for Computational Health, IBM Research, Cambridge, Massachusetts, USA.
  • Zambrano J; Atrius Health Academic Institute, Atrius Health, Boston, Massachusetts, USA.
  • Ng K; Center for Computational Health, IBM Research, Cambridge, Massachusetts, USA.
J Am Med Inform Assoc ; 28(3): 588-595, 2021 03 01.
Article em En | MEDLINE | ID: mdl-33180897
OBJECTIVE: To present clinicians at the point-of-care with real-world data on the effectiveness of various treatment options in a precision cohort of patients closely matched to the index patient. MATERIALS AND METHODS: We developed disease-specific, machine-learning, patient-similarity models for hypertension (HTN), type II diabetes mellitus (T2DM), and hyperlipidemia (HL) using data on approximately 2.5 million patients in a large medical group practice. For each identified decision point, an encounter during which the patient's condition was not controlled, we compared the actual outcome of the treatment decision administered to that of the best-achieved outcome for similar patients in similar clinical situations. RESULTS: For the majority of decision points (66.8%, 59.0%, and 83.5% for HTN, T2DM, and HL, respectively), there were alternative treatment options administered to patients in the precision cohort that resulted in a significantly increased proportion of patients under control than the treatment option chosen for the index patient. The expected percentage of patients whose condition would have been controlled if the best-practice treatment option had been chosen would have been better than the actual percentage by: 36% (65.1% vs 48.0%, HTN), 68% (37.7% vs 22.5%, T2DM), and 138% (75.3% vs 31.7%, HL). CONCLUSION: Clinical guidelines are primarily based on the results of randomized controlled trials, which apply to a homogeneous subject population. Providing the effectiveness of various treatment options used in a precision cohort of patients similar to the index patient can provide complementary information to tailor guideline recommendations for individual patients and potentially improve outcomes.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Administração dos Cuidados ao Paciente / Tomada de Decisões Assistida por Computador / Guias de Prática Clínica como Assunto / Diabetes Mellitus Tipo 2 / Aprendizado de Máquina / Hiperlipidemias / Hipertensão Tipo de estudo: Clinical_trials / Guideline / Prognostic_studies Limite: Humans Idioma: En Revista: J Am Med Inform Assoc Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Administração dos Cuidados ao Paciente / Tomada de Decisões Assistida por Computador / Guias de Prática Clínica como Assunto / Diabetes Mellitus Tipo 2 / Aprendizado de Máquina / Hiperlipidemias / Hipertensão Tipo de estudo: Clinical_trials / Guideline / Prognostic_studies Limite: Humans Idioma: En Revista: J Am Med Inform Assoc Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido