Your browser doesn't support javascript.
loading
How directed evolution reshapes the energy landscape in an enzyme to boost catalysis.
Otten, Renee; Pádua, Ricardo A P; Bunzel, H Adrian; Nguyen, Vy; Pitsawong, Warintra; Patterson, MacKenzie; Sui, Shuo; Perry, Sarah L; Cohen, Aina E; Hilvert, Donald; Kern, Dorothee.
Afiliação
  • Otten R; Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.
  • Pádua RAP; Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.
  • Bunzel HA; Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland.
  • Nguyen V; Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.
  • Pitsawong W; Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.
  • Patterson M; Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA.
  • Sui S; Department of Chemical Engineering, Institute of Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA.
  • Perry SL; Department of Chemical Engineering, Institute of Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA.
  • Cohen AE; Stanford Synchrotron Radiation Lightsource, Menlo Park, CA 94025, USA.
  • Hilvert D; Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland. hilvert@org.chem.ethz.ch dkern@brandeis.edu.
  • Kern D; Howard Hughes Medical Institute and Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA. hilvert@org.chem.ethz.ch dkern@brandeis.edu.
Science ; 370(6523): 1442-1446, 2020 12 18.
Article em En | MEDLINE | ID: mdl-33214289
ABSTRACT
The advent of biocatalysts designed computationally and optimized by laboratory evolution provides an opportunity to explore molecular strategies for augmenting catalytic function. Applying a suite of nuclear magnetic resonance, crystallography, and stopped-flow techniques to an enzyme designed for an elementary proton transfer reaction, we show how directed evolution gradually altered the conformational ensemble of the protein scaffold to populate a narrow, highly active conformational ensemble and accelerate this transformation by nearly nine orders of magnitude. Mutations acquired during optimization enabled global conformational changes, including high-energy backbone rearrangements, that cooperatively organized the catalytic base and oxyanion stabilizer, thus perfecting transition-state stabilization. The development of protein catalysts for many chemical transformations could be facilitated by explicitly sampling conformational substates during design and specifically stabilizing productive substates over all unproductive conformations.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas / Desenho Assistido por Computador / Evolução Molecular Direcionada / Enzimas / Biocatálise Idioma: En Revista: Science Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas / Desenho Assistido por Computador / Evolução Molecular Direcionada / Enzimas / Biocatálise Idioma: En Revista: Science Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos