Your browser doesn't support javascript.
loading
Massively multiplex single-molecule oligonucleosome footprinting.
Abdulhay, Nour J; McNally, Colin P; Hsieh, Laura J; Kasinathan, Sivakanthan; Keith, Aidan; Estes, Laurel S; Karimzadeh, Mehran; Underwood, Jason G; Goodarzi, Hani; Narlikar, Geeta J; Ramani, Vijay.
Afiliação
  • Abdulhay NJ; Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, United States.
  • McNally CP; Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, United States.
  • Hsieh LJ; Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, United States.
  • Kasinathan S; Department of Pediatrics, Stanford University, Palo Alto, United States.
  • Keith A; Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, United States.
  • Estes LS; Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, United States.
  • Karimzadeh M; Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, United States.
  • Underwood JG; Vector Institute, Toronto, United States.
  • Goodarzi H; Pacific Biosciences of California Inc, Menlo Park, United States.
  • Narlikar GJ; Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, United States.
  • Ramani V; Bakar Computational Health Sciences Institute, San Francisco, United States.
Elife ; 92020 12 02.
Article em En | MEDLINE | ID: mdl-33263279
ABSTRACT
Our understanding of the beads-on-a-string arrangement of nucleosomes has been built largely on high-resolution sequence-agnostic imaging methods and sequence-resolved bulk biochemical techniques. To bridge the divide between these approaches, we present the single-molecule adenine methylated oligonucleosome sequencing assay (SAMOSA). SAMOSA is a high-throughput single-molecule sequencing method that combines adenine methyltransferase footprinting and single-molecule real-time DNA sequencing to natively and nondestructively measure nucleosome positions on individual chromatin fibres. SAMOSA data allows unbiased classification of single-molecular 'states' of nucleosome occupancy on individual chromatin fibres. We leverage this to estimate nucleosome regularity and spacing on single chromatin fibres genome-wide, at predicted transcription factor binding motifs, and across human epigenomic domains. Our analyses suggest that chromatin is comprised of both regular and irregular single-molecular oligonucleosome patterns that differ subtly in their relative abundance across epigenomic domains. This irregularity is particularly striking in constitutive heterochromatin, which has typically been viewed as a conformationally static entity. Our proof-of-concept study provides a powerful new methodology for studying nucleosome organization at a previously intractable resolution and offers up new avenues for modeling and visualizing higher order chromatin structure.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA / Cromatina / Nucleossomos / Sequenciamento de Nucleotídeos em Larga Escala / Imagem Individual de Molécula Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Elife Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA / Cromatina / Nucleossomos / Sequenciamento de Nucleotídeos em Larga Escala / Imagem Individual de Molécula Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Elife Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM