Your browser doesn't support javascript.
loading
CRISPR/Cas9-engineered Gad1 elimination in rats leads to complex behavioral changes: implications for schizophrenia.
Fujihara, Kazuyuki; Yamada, Kazuo; Ichitani, Yukio; Kakizaki, Toshikazu; Jiang, Weiru; Miyata, Shigeo; Suto, Takashi; Kato, Daiki; Saito, Shigeru; Watanabe, Masahiko; Kajita, Yuki; Ohshiro, Tomokazu; Mushiake, Hajime; Miyasaka, Yoshiki; Mashimo, Tomoji; Yasuda, Hiroki; Yanagawa, Yuchio.
Afiliação
  • Fujihara K; Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi City, Gunma, 371-8511, Japan. psy_fujihara@gunma-u.ac.jp.
  • Yamada K; Department of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, Maebashi City, Gunma, 371-8511, Japan. psy_fujihara@gunma-u.ac.jp.
  • Ichitani Y; Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba City, Ibaraki, 305-8577, Japan.
  • Kakizaki T; Institute of Psychology and Behavioral Neuroscience, University of Tsukuba, Tsukuba City, Ibaraki, 305-8577, Japan.
  • Jiang W; Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi City, Gunma, 371-8511, Japan.
  • Miyata S; Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi City, Gunma, 371-8511, Japan.
  • Suto T; Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi City, Gunma, 371-8511, Japan.
  • Kato D; Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi City, Gunma, 371-8511, Japan.
  • Saito S; Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi City, Gunma, 371-8511, Japan.
  • Watanabe M; Department of Anesthesiology, Gunma University Graduate School of Medicine, Maebashi City, Gunma, 371-8511, Japan.
  • Kajita Y; Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo City, Hokkaido, 060-8638, Japan.
  • Ohshiro T; Department of Physiology, Graduate School of Medicine, Tohoku University, Sendai City, Miyagi, 980-8575, Japan.
  • Mushiake H; Department of Physiology, Graduate School of Medicine, Tohoku University, Sendai City, Miyagi, 980-8575, Japan.
  • Miyasaka Y; Department of Physiology, Graduate School of Medicine, Tohoku University, Sendai City, Miyagi, 980-8575, Japan.
  • Mashimo T; Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita City, Osaka, 565-0871, Japan.
  • Yasuda H; Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita City, Osaka, 565-0871, Japan.
  • Yanagawa Y; Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan.
Transl Psychiatry ; 10(1): 426, 2020 12 08.
Article em En | MEDLINE | ID: mdl-33293518
GABAergic dysfunctions have been implicated in the pathogenesis of schizophrenia, especially the associated cognitive impairments. The GABA synthetic enzyme glutamate decarboxylase 67-kDa isoform (GAD67) encoded by the GAD1 gene is downregulated in the brains of patients with schizophrenia. Furthermore, a patient with schizophrenia harboring a homozygous mutation of GAD1 has recently been discovered. However, it remains unclear whether loss of function of GAD1 leads to the symptoms observed in schizophrenia, including cognitive impairment. One of the obstacles faced in experimental studies to address this issue is the perinatal lethality of Gad1 knockout (KO) mice, which precluded characterization at the adult stage. In the present study, we successfully generated Gad1 KO rats using CRISPR/Cas9 genome editing technology. Surprisingly, 33% of Gad1 KO rats survived to adulthood and could be subjected to further characterization. The GABA concentration in the Gad1 KO cerebrum was reduced to ~52% of the level in wild-type rats. Gad1 KO rats exhibited impairments in both spatial reference and working memory without affecting adult neurogenesis in the hippocampus. In addition, Gad1 KO rats showed a wide range of behavioral alterations, such as enhanced sensitivity to an NMDA receptor antagonist, hypoactivity in a novel environment, and decreased preference for social novelty. Taken together, the results suggest that Gad1 KO rats could provide a novel model covering not only cognitive deficits but also other aspects of the disorder. Furthermore, the present study teaches an important lesson: differences between species should be considered when developing animal models of human diseases.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Esquizofrenia Limite: Adult / Animals / Humans Idioma: En Revista: Transl Psychiatry Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Japão País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Esquizofrenia Limite: Adult / Animals / Humans Idioma: En Revista: Transl Psychiatry Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Japão País de publicação: Estados Unidos