Your browser doesn't support javascript.
loading
Highly sensitive detection of cancer cells via split aptamer mediated proximity-induced hybridization chain reaction.
Li, Lie; Jiang, Huishan; Meng, Xiangxian; Wen, Xiaohong; Guo, Qiuping; Li, Zenghui; Wang, Jie; Ren, Yazhou; Wang, Kemin.
Afiliação
  • Li L; College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China.
  • Jiang H; College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China.
  • Meng X; College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China.
  • Wen X; College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China.
  • Guo Q; College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China. Electronic address: guoqping@126.com.
  • Li Z; College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China.
  • Wang J; College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China.
  • Ren Y; College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China.
  • Wang K; College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecule Engineering of Hunan Province, Changsha, 410082, China. Electronic address: kmwang@hnu.edu.cn.
Talanta ; 223(Pt 1): 121724, 2021 Feb 01.
Article em En | MEDLINE | ID: mdl-33303170
ABSTRACT
Highly sensitive detection of cancer cells is of great importance for evaluating cancer development and improving survival rates. Here, we developed a split aptamer mediated proximity-induced hybridization chain reaction (HCR) strategy to meet this purpose. In this strategy, two split aptamer initiator probes, Sp-a and Sp-b, and two HCR hairpin probes, H1 and H2 were designed. The split aptamer initiator probes contained two components, split aptamer domains being responsible for target recognition, and the split initiator parts serving as the HCR promoter. In the presence of target cells, Sp-a and Sp-b would self-assemble on the cell surfaces, allowing the formation of an intact nicked initiator to activate the HCR reaction. Benefit from low background split aptamers and HCR amplification, this strategy presented high sensitivity in quantitative detection with a detection limit of 18 cells in 150 µL of binding buffer. Moreover, the approach exhibited excellent specificity to target cells in 10% fetal bovine serum and mixed cell samples, which was favorable for clinical diagnosis in complex biological environment. In addition, by changing the split aptamers attached to the split initiator, the proposed strategy can be expanded to detect various kinds of target cells. It may provide a novel and useful applicable platform for the sensitive detection of cancer cells in biomedicine and tumor-related studies.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Aptâmeros de Nucleotídeos / Neoplasias Tipo de estudo: Diagnostic_studies Idioma: En Revista: Talanta Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Aptâmeros de Nucleotídeos / Neoplasias Tipo de estudo: Diagnostic_studies Idioma: En Revista: Talanta Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China