Semi-supervised learning for somatic variant calling and peptide identification in personalized cancer immunotherapy.
BMC Bioinformatics
; 21(Suppl 18): 498, 2020 Dec 30.
Article
em En
| MEDLINE
| ID: mdl-33375939
BACKGROUND: Personalized cancer vaccines are emerging as one of the most promising approaches to immunotherapy of advanced cancers. However, only a small proportion of the neoepitopes generated by somatic DNA mutations in cancer cells lead to tumor rejection. Since it is impractical to experimentally assess all candidate neoepitopes prior to vaccination, developing accurate methods for predicting tumor-rejection mediating neoepitopes (TRMNs) is critical for enabling routine clinical use of cancer vaccines. RESULTS: In this paper we introduce Positive-unlabeled Learning using AuTOml (PLATO), a general semi-supervised approach to improving accuracy of model-based classifiers. PLATO generates a set of high confidence positive calls by applying a stringent filter to model-based predictions, then rescores remaining candidates by using positive-unlabeled learning. To achieve robust performance on clinical samples with large patient-to-patient variation, PLATO further integrates AutoML hyper-parameter tuning, classification threshold selection based on spies, and support for bootstrapping. CONCLUSIONS: Experimental results on real datasets demonstrate that PLATO has improved performance compared to model-based approaches for two key steps in TRMN prediction, namely somatic variant calling from exome sequencing data and peptide identification from MS/MS data.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Peptídeos
/
Medicina de Precisão
/
Aprendizado de Máquina Supervisionado
/
Imunoterapia
/
Neoplasias
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
Limite:
Humans
Idioma:
En
Revista:
BMC Bioinformatics
Assunto da revista:
INFORMATICA MEDICA
Ano de publicação:
2020
Tipo de documento:
Article
País de afiliação:
Estados Unidos
País de publicação:
Reino Unido