Your browser doesn't support javascript.
loading
Semi-supervised learning for somatic variant calling and peptide identification in personalized cancer immunotherapy.
Sherafat, Elham; Force, Jordan; Mandoiu, Ion I.
Afiliação
  • Sherafat E; Computer Science and Engineering Department, University of Connecticut, Storrs, CT, 06269, USA.
  • Force J; Computer Science and Engineering Department, University of Connecticut, Storrs, CT, 06269, USA.
  • Mandoiu II; Computer Science and Engineering Department, University of Connecticut, Storrs, CT, 06269, USA. ion@engr.uconn.edu.
BMC Bioinformatics ; 21(Suppl 18): 498, 2020 Dec 30.
Article em En | MEDLINE | ID: mdl-33375939
BACKGROUND: Personalized cancer vaccines are emerging as one of the most promising approaches to immunotherapy of advanced cancers. However, only a small proportion of the neoepitopes generated by somatic DNA mutations in cancer cells lead to tumor rejection. Since it is impractical to experimentally assess all candidate neoepitopes prior to vaccination, developing accurate methods for predicting tumor-rejection mediating neoepitopes (TRMNs) is critical for enabling routine clinical use of cancer vaccines. RESULTS: In this paper we introduce Positive-unlabeled Learning using AuTOml (PLATO), a general semi-supervised approach to improving accuracy of model-based classifiers. PLATO generates a set of high confidence positive calls by applying a stringent filter to model-based predictions, then rescores remaining candidates by using positive-unlabeled learning. To achieve robust performance on clinical samples with large patient-to-patient variation, PLATO further integrates AutoML hyper-parameter tuning, classification threshold selection based on spies, and support for bootstrapping. CONCLUSIONS: Experimental results on real datasets demonstrate that PLATO has improved performance compared to model-based approaches for two key steps in TRMN prediction, namely somatic variant calling from exome sequencing data and peptide identification from MS/MS data.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peptídeos / Medicina de Precisão / Aprendizado de Máquina Supervisionado / Imunoterapia / Neoplasias Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peptídeos / Medicina de Precisão / Aprendizado de Máquina Supervisionado / Imunoterapia / Neoplasias Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido