Your browser doesn't support javascript.
loading
Computational modeling suggests binding-induced expansion of Epsin disordered regions upon association with AP2.
Jagannathan, N Suhas; Hogue, Christopher W V; Tucker-Kellogg, Lisa.
Afiliação
  • Jagannathan NS; Cancer & Stem Cell Biology, and Centre for Computational Biology, Duke-NUS Medical School, 8 College Road, Singapore.
  • Hogue CWV; Singapore-MIT Alliance, Computation and Systems Biology Program, National University of Singapore, Singapore.
  • Tucker-Kellogg L; Singapore-MIT Alliance, Computation and Systems Biology Program, National University of Singapore, Singapore.
PLoS Comput Biol ; 17(1): e1008474, 2021 01.
Article em En | MEDLINE | ID: mdl-33406091
ABSTRACT
Intrinsically disordered regions (IDRs) are prevalent in the eukaryotic proteome. Common functional roles of IDRs include forming flexible linkers or undergoing allosteric folding-upon-binding. Recent studies have suggested an additional functional role for IDRs generating steric pressure on the plasma membrane during endocytosis, via molecular crowding. However, in order to accomplish useful functions, such crowding needs to be regulated in space (e.g., endocytic hotspots) and time (e.g., during vesicle formation). In this work, we explore binding-induced regulation of IDR steric volume. We simulate the IDRs of two proteins from Clathrin-mediated endocytosis (CME) to see if their conformational spaces are regulated via binding-induced expansion. Using Monte-Carlo computational modeling of excluded volumes, we generate large conformational ensembles (3 million) for the IDRs of Epsin and Eps15 and dock the conformers to the alpha subunit of Adaptor Protein 2 (AP2α), their CME binding partner. Our results show that as more molecules of AP2α are bound, the Epsin-derived ensemble shows a significant increase in global dimensions, measured as the radius of Gyration (RG) and the end-to-end distance (EED). Unlike Epsin, Eps15-derived conformers that permit AP2α binding at one motif were found to be more likely to accommodate binding of AP2α at other motifs, suggesting a tendency toward co-accessibility of binding motifs. Co-accessibility was not observed for any pair of binding motifs in Epsin. Thus, we speculate that the disordered regions of Epsin and Eps15 perform different roles during CME, with accessibility in Eps15 allowing it to act as a recruiter of AP2α molecules, while binding-induced expansion of the Epsin disordered region could impose steric pressure and remodel the plasma membrane during vesicle formation.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Adaptadoras de Transporte Vesicular / Complexo 2 de Proteínas Adaptadoras / Proteínas Intrinsicamente Desordenadas Tipo de estudo: Risk_factors_studies Limite: Humans Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Singapura

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Adaptadoras de Transporte Vesicular / Complexo 2 de Proteínas Adaptadoras / Proteínas Intrinsicamente Desordenadas Tipo de estudo: Risk_factors_studies Limite: Humans Idioma: En Revista: PLoS Comput Biol Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Singapura