Your browser doesn't support javascript.
loading
High throughput microfluidic system with multiple oxygen levels for the study of hypoxia in tumor spheroids.
Berger Fridman, Ilana; Ugolini, Giovanni Stefano; VanDelinder, Virginia; Cohen, Smadar; Konry, Tania.
Afiliação
  • Berger Fridman I; Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America.
  • Ugolini GS; Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and Regenerative Medicine and Stem Cell Center, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel.
  • VanDelinder V; Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America.
  • Cohen S; Center for Integrated Technologies, Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185-1315, United States of America.
  • Konry T; Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and Regenerative Medicine and Stem Cell Center, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel.
Biofabrication ; 13(3)2021 04 26.
Article em En | MEDLINE | ID: mdl-33440359
ABSTRACT
Replication of physiological oxygen levels is fundamental for modeling human physiology and pathology inin vitromodels. Environmental oxygen levels, applied in mostin vitromodels, poorly imitate the oxygen conditions cells experiencein vivo, where oxygen levels average ∼5%. Most solid tumors exhibit regions of hypoxic levels, promoting tumor progression and resistance to therapy. Though this phenomenon offers a specific target for cancer therapy, appropriatein vitroplatforms are still lacking. Microfluidic models offer advanced spatio-temporal control of physico-chemical parameters. However, most of the systems described to date control a single oxygen level per chip, thus offering limited experimental throughput. Here, we developed a multi-layer microfluidic device coupling the high throughput generation of 3D tumor spheroids with a linear gradient of five oxygen levels, thus enabling multiple conditions and hundreds of replicates on a single chip. We showed how the applied oxygen gradient affects the generation of reactive oxygen species (ROS) and the cytotoxicity of Doxorubicin and Tirapazamine in breast tumor spheroids. Our results aligned with previous reports of increased ROS production under hypoxia and provide new insights on drug cytotoxicity levels that are closer to previously reportedin vivofindings, demonstrating the predictive potential of our system.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Microfluídica Tipo de estudo: Prognostic_studies Limite: Female / Humans Idioma: En Revista: Biofabrication Assunto da revista: BIOTECNOLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Mama / Microfluídica Tipo de estudo: Prognostic_studies Limite: Female / Humans Idioma: En Revista: Biofabrication Assunto da revista: BIOTECNOLOGIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM