Your browser doesn't support javascript.
loading
Novel housing designs for nanofiltration and ultrafiltration gravity-driven recycled membrane-based systems.
García-Pacheco, Raquel; Li, Qiyuan; Comas, Joaquim; Taylor, Robert A; Le-Clech, Pierre.
Afiliação
  • García-Pacheco R; LEQUIA, Institute of the Environment, University of Girona Campus Montilivi, carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales (UNSW), Kensington, New South Wales 20
  • Li Q; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia; School of Mechanical and Manufacturing Engineering, The University of New South Wales (UNSW), Kensington, New South Wales 2052, Au
  • Comas J; LEQUIA, Institute of the Environment, University of Girona Campus Montilivi, carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain; Catalan Institute for Water Research (ICRA), 17003 Girona, Spain.
  • Taylor RA; School of Mechanical and Manufacturing Engineering, The University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia.
  • Le-Clech P; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, The University of New South Wales (UNSW), Kensington, New South Wales 2052, Australia.
Sci Total Environ ; 767: 144181, 2021 May 01.
Article em En | MEDLINE | ID: mdl-33450590
Ultra-low pressure gravity-driven membrane (GDM) systems have the potential to be significantly less costly and complex than conventional membranes for water treatment applications. To build upon this inherent advantage, this study assesses the reuse of recycled membranes in GDM systems for producing drinking water. Two reverse osmosis spiral-wound modules were recycled into nanofiltration (NF)-like and ultrafiltration (UF)-like membranes via controlled exposure to free chlorine. To operate the recycled membranes, two housing devices, based on a simple fitting and an advanced end-caps design, were developed. The recycled membrane systems were tested under a range of conditions (submerged vs. external system configuration and continuous vs. intermittent filtration mode). Synthetic river water feed solutions were used in the tests where performance, fouling, and clogging were measured. NF-like recycled membranes resulted in poor salt rejection and low permeability (~1.7 L m-2 h-1 bar-1), but also in high rejection (>81%) of dissolved organic carbon. UF-like recycled membranes maintained their capacity to reject biopolymers (BP) (>74%) and featured up to 18-fold higher permeate rate than NF-like recycled membranes. The optimized operating conditions were found when the recycled membranes were housed in the end-caps device and operated intermittently (relaxation time plus forward flushing). Flushing reduced the fouling accumulation inside the membrane (only 12% and 40% of BP accumulation was observed in the NF-like and UF-like, respectively). However, the end-caps-based device was estimated to be more expensive during the economic analysis. To address this techno-economic trade-off, a decision-making tree was developed to select the appropriate configuration based upon the implementation context. Overall, this study concludes that these designs can serve as robust, low-cost (water production cost <1 USD ct. yr. L-1), and light-weight GDM alternatives. This study is beneficial for developing compact GDM systems based on recycled spiral-wound membranes for both rural areas and emergency response.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Total Environ Ano de publicação: 2021 Tipo de documento: Article País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Total Environ Ano de publicação: 2021 Tipo de documento: Article País de publicação: Holanda