Selective colorimetric detection of copper (II) by a protein-based nanoprobe.
Spectrochim Acta A Mol Biomol Spectrosc
; 252: 119462, 2021 May 05.
Article
em En
| MEDLINE
| ID: mdl-33524823
In this work, we report a novel protein-based nanoprobe (PNP) that can be employed for quantitative analysis of Cu2+ in pure water medium and real samples. Structurally, the proposed nanoprobe comprises a biofriendly protein (hen egg-white lysozyme (HEWL)) and a Cu2+-specific chromogenic agent, where HEWL acts as a nanocarrier encapsulating a structurally tailored rhodamine B derivate. The resulting PNP exhibits a hydrodynamic diameter of ~ 106 nm and efficiently disperses in water, enabling the detection of Cu2+ in pure aqueous systems without the aid of any organic co-solvents. The high sensitivity and selectivity of PNP allow the colorimetric detection of Cu2+ in the presence of other metal interferents with a low detection limit of 160 nM. The satisfying recovery of trace level Cu2+ in environmental samples demonstrate the great potential of employing PNP for the determination of Cu2+ in actual applications. Most importantly, the simple co-grinding method employing proteins and chromogenic agents provides a novel strategy to generate sensing systems that are useful detection of pollutants in aqueous samples.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Proteínas
/
Colorimetria
/
Cobre
/
Nanoestruturas
Tipo de estudo:
Diagnostic_studies
Idioma:
En
Revista:
Spectrochim Acta A Mol Biomol Spectrosc
Assunto da revista:
BIOLOGIA MOLECULAR
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
Suécia
País de publicação:
Reino Unido