Your browser doesn't support javascript.
loading
Cardiomyocyte Na+/H+ Exchanger-1 Activity Is Reduced in Hypoxia.
Kandilci, Hilmi Burak; Richards, Mark A; Fournier, Marjorie; Simsek, Gül; Chung, Yu Jin; Lakhal-Littleton, Samira; Swietach, Pawel.
Afiliação
  • Kandilci HB; Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom.
  • Richards MA; Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey.
  • Fournier M; Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom.
  • Simsek G; Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
  • Chung YJ; Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom.
  • Lakhal-Littleton S; Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey.
  • Swietach P; Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom.
Front Cardiovasc Med ; 7: 617038, 2020.
Article em En | MEDLINE | ID: mdl-33585583
ABSTRACT
Fully-activated Na+/H+ exchanger-1 (NHE1) generates the cardiomyocyte's largest trans-membrane extrusion of H+ ions for an equimolar influx of Na+ ions. This has the desirable effect of clearing excess intracellular acidity, but comes at a large energetic premium because the exchanged Na+ ions must ultimately be extruded by the sodium pump, a process that consumes the majority of the heart's non-contractile ATP. We hypothesize that the state of NHE1 activation depends on metabolic resources, which become limiting in periods of myocardial hypoxia. To test this functionally, NHE1 activity was measured in response to in vitro and in vivo hypoxic treatments. NHE1 flux was interrogated as a function of intracellular pH by fluorescence imaging of rodent ventricular myocytes loaded with pH-sensitive dyes BCECF or cSNARF1. Anoxic superfusates promptly inhibited NHE1, tracking the time-course of mitochondrial depolarization. Mass spectrometry of NHE1 immuno-precipitated from Langendorff-perfused anoxic hearts identified Tyr-581 dephosphorylation and Tyr-561 phosphorylation. The latter residue is part of the domain that interacts with phosphatidylinositol 4,5-bisphosphate (PIP2), a membrane lipid that becomes depleted under metabolic inhibition. Tyr-561 phosphorylation is expected to electrostatically weaken this activatory interaction. To test if a period of hypoxia produces a persistent inhibition of NHE1, measurements under normoxia were performed on myocytes that had been incubated in 2% O2 for 4 h. NHE1 activity remained inhibited, but the effect was ablated in the presence of Dasatinib, an inhibitor of Abl/Src-family tyrosine kinases. Chronic tissue hypoxia in vivo, attained in a mouse model of anemic hypoxia, also resulted in persistently slower NHE1. In summary, we show that NHE1 responds to oxygen, a physiologically-relevant metabolic regulator, ostensibly to divert ATP for contraction. We describe a novel mechanism of NHE1 inhibition that may be relevant in cardiac disorders featuring altered oxygen metabolism, such as myocardial ischemia and reperfusion injury.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Cardiovasc Med Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Front Cardiovasc Med Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Reino Unido