Your browser doesn't support javascript.
loading
Redox signaling through zinc activates the radiation response in Deinococcus bacteria.
Magerand, Romaric; Rey, Pascal; Blanchard, Laurence; de Groot, Arjan.
Afiliação
  • Magerand R; Aix Marseille Univ, CEA, CNRS, BIAM, Molecular and Environmental Microbiology Team, 13108, Saint Paul-Lez-Durance, France.
  • Rey P; Aix Marseille Univ, CEA, CNRS, BIAM, Plant Protective Proteins Team, 13108, Saint Paul-Lez-Durance, France.
  • Blanchard L; Aix Marseille Univ, CEA, CNRS, BIAM, Molecular and Environmental Microbiology Team, 13108, Saint Paul-Lez-Durance, France.
  • de Groot A; Aix Marseille Univ, CEA, CNRS, BIAM, Molecular and Environmental Microbiology Team, 13108, Saint Paul-Lez-Durance, France. nicolaas.degroot@cea.fr.
Sci Rep ; 11(1): 4528, 2021 02 25.
Article em En | MEDLINE | ID: mdl-33633226
Deinococcus bacteria are extremely resistant to radiation and other DNA damage- and oxidative stress-generating conditions. An efficient SOS-independent response mechanism inducing expression of several DNA repair genes is essential for this resistance, and is controlled by metalloprotease IrrE that cleaves and inactivates transcriptional repressor DdrO. Here, we identify the molecular signaling mechanism that triggers DdrO cleavage. We show that reactive oxygen species (ROS) stimulate the zinc-dependent metalloprotease activity of IrrE in Deinococcus. Sudden exposure of Deinococcus to zinc excess also rapidly induces DdrO cleavage, but is not accompanied by ROS production and DNA damage. Further, oxidative treatment leads to an increase of intracellular free zinc, indicating that IrrE activity is very likely stimulated directly by elevated levels of available zinc ions. We conclude that radiation and oxidative stress induce changes in redox homeostasis that result in IrrE activation by zinc in Deinococcus. We propose that a part of the zinc pool coordinated with cysteine thiolates is released due to their oxidation. Predicted regulation systems involving IrrE- and DdrO-like proteins are present in many bacteria, including pathogens, suggesting that such a redox signaling pathway including zinc as a second messenger is widespread and participates in various stress responses.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oxirredução / Tolerância a Radiação / Zinco / Transdução de Sinais / Deinococcus Tipo de estudo: Prognostic_studies Idioma: En Revista: Sci Rep Ano de publicação: 2021 Tipo de documento: Article País de afiliação: França País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oxirredução / Tolerância a Radiação / Zinco / Transdução de Sinais / Deinococcus Tipo de estudo: Prognostic_studies Idioma: En Revista: Sci Rep Ano de publicação: 2021 Tipo de documento: Article País de afiliação: França País de publicação: Reino Unido