Your browser doesn't support javascript.
loading
MgO surface lattice phonons observation during interstellar ice transition.
Chavarría-Sibaja, A; Marín-Sosa, S; Bolaños-Jiménez, E; Hernández-Calderón, M; Herrera-Sancho, O A.
Afiliação
  • Chavarría-Sibaja A; Escuela de Física, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica.
  • Marín-Sosa S; Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica.
  • Bolaños-Jiménez E; Escuela de Física, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica.
  • Hernández-Calderón M; Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica.
  • Herrera-Sancho OA; Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, San Pedro, San José, 2060, Costa Rica.
Sci Rep ; 11(1): 6149, 2021 Mar 17.
Article em En | MEDLINE | ID: mdl-33731796
Relevant information on the origins of the solar system and the early evolution of life itself can be derive from systematic and controlled exploration of water ice here on Earth. Therefore, over the last decades, a huge effort on experimental methodologies has been made to study the multiple crystal ice phases, which are observed outside our home-gravitational-potential. By employing (100)-oriented MgO lattice surface as a microcantilever sensor, we conducted the first ever study on the dynamics of the Structural Phase Transition at 185 K in water ice by means of coherent elastic scattering of electron diffraction. We estimate the amount of phonons caused by this transition applying precise quantum computing key tools, and resulting in a maximum value of 1.23 ± 0.02. Further applications of our microcantilever sensor were assessed using unambiguous mapping of the surface stress induced by the c([Formula: see text]) → p([Formula: see text]) Structural Phase Transition of the interstellar ice formulated on the Williamsom-Hall model. This development paves the way and thus establishes an efficient characterization tool of the surface mechanical strains of materials with potential applications arising from interstellar ice inclusive glaciers to the wide spectrum of solid-state physics.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Costa Rica País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Costa Rica País de publicação: Reino Unido