Your browser doesn't support javascript.
loading
Genome-based rational engineering of Actinoplanes deccanensis for improving fidaxomicin production and genetic stability.
Li, Yue-Ping; Bu, Qing-Ting; Li, Ji-Feng; Xie, Huang; Su, Yi-Ting; Du, Yi-Ling; Li, Yong-Quan.
Afiliação
  • Li YP; First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China.
  • Bu QT; First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China.
  • Li JF; First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China.
  • Xie H; First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China.
  • Su YT; First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China.
  • Du YL; First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China.
  • Li YQ; First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China. Electronic address: lyq@zju.edu.cn.
Bioresour Technol ; 330: 124982, 2021 Jun.
Article em En | MEDLINE | ID: mdl-33743279
ABSTRACT
Microbial fermentation is currently still the major way to produce structural complicated clinical drugs. Yet, the low productivity and genetic instability of producing strains remain the bottlenecks in microbial pharmaceutical industry. Fidaxomicin is a microbial drug against the Clostridium difficile infection. Here, a genome-based combinatorial engineering strategy was established to improve both fidaxomicin production and the genetic stability of Actinoplanes deccanensis YP-1. Guided by genomic analysis, several genetic instability-associated elements were cumulatively deleted, generating a more genetically stable mutant. Further rational engineering approaches including elimination of a pigment pathway, duplication of the fidaxomicin gene cluster, overexpression of a positive regulator and optimization of the fermentation medium, led to an overall 27-folds improvement in fidaxomicin production. Taken together, the genome-based rational combinatorial engineering strategy was efficient to enhance the fidaxomicin production and ameliorate the genetic stability of YP-1, it can also be widely used in other industrial actinomycetes for strain improvement.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Clostridioides difficile / Actinoplanes Idioma: En Revista: Bioresour Technol Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China País de publicação: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Clostridioides difficile / Actinoplanes Idioma: En Revista: Bioresour Technol Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China País de publicação: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM