Your browser doesn't support javascript.
loading
Manual and Automatic Image Analysis Segmentation Methods for Blood Flow Studies in Microchannels.
Carvalho, Violeta; Gonçalves, Inês M; Souza, Andrews; Souza, Maria S; Bento, David; Ribeiro, João E; Lima, Rui; Pinho, Diana.
Afiliação
  • Carvalho V; Mechanical Engineering and Resource Sustainability Center (MEtRICs), Mechanical Engineering Department, University of Minho, 4800-058 Guimarães, Portugal.
  • Gonçalves IM; Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
  • Souza A; Centro para a Valorização de Resíduos (CVR), University of Minho, 4800-028 Guimarães, Portugal.
  • Souza MS; Center for MicroElectromechanical Systems (CMEMS), University of Minho, 4800-058 Guimarães, Portugal.
  • Bento D; Transport Phenomena Research Center (CEFT), Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
  • Ribeiro JE; Polytechnic Institute of Bragança, ESTiG/IPB, C. Sta. Apolónia, 5300-857 Bragança, Portugal.
  • Lima R; Polytechnic Institute of Bragança, ESTiG/IPB, C. Sta. Apolónia, 5300-857 Bragança, Portugal.
  • Pinho D; Centro de Investigação de Montanha (CIMO), Polytechnic Institute of Bragança, 5300-252, Bragança, Portugal.
Micromachines (Basel) ; 12(3)2021 Mar 18.
Article em En | MEDLINE | ID: mdl-33803615
In blood flow studies, image analysis plays an extremely important role to examine raw data obtained by high-speed video microscopy systems. This work shows different ways to process the images which contain various blood phenomena happening in microfluidic devices and in microcirculation. For this purpose, the current methods used for tracking red blood cells (RBCs) flowing through a glass capillary and techniques to measure the cell-free layer thickness in different kinds of microchannels will be presented. Most of the past blood flow experimental data have been collected and analyzed by means of manual methods, that can be extremely reliable, but they are highly time-consuming, user-intensive, repetitive, and the results can be subjective to user-induced errors. For this reason, it is crucial to develop image analysis methods able to obtain the data automatically. Concerning automatic image analysis methods for individual RBCs tracking and to measure the well known microfluidic phenomena cell-free layer, two developed methods are presented and discussed in order to demonstrate their feasibility to obtain accurate data acquisition in such studies. Additionally, a comparison analysis between manual and automatic methods was performed.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Micromachines (Basel) Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Portugal País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Micromachines (Basel) Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Portugal País de publicação: Suíça