Your browser doesn't support javascript.
loading
Suppressing the Voltage Decay Based on a Distinct Stacking Sequence of Oxygen Atoms for Li-Rich Cathode Materials.
Cao, Shuang; Wu, Chao; Xie, Xin; Li, Heng; Zang, Zihao; Li, Zhi; Chen, Gairong; Guo, Xiaowei; Wang, Xianyou.
Afiliação
  • Cao S; National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan 4111
  • Wu C; National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan 4111
  • Xie X; National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan 4111
  • Li H; National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan 4111
  • Zang Z; National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan 4111
  • Li Z; National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan 4111
  • Chen G; School of Chemistry & Materials Engineering, Xinxiang University, Henan 453003, China.
  • Guo X; School of Chemistry & Materials Engineering, Xinxiang University, Henan 453003, China.
  • Wang X; National Base for International Science & Technology Cooperation, National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, Hunan Province Key Laboratory of Electrochemical Energy Storage & Conversion, School of Chemistry, Xiangtan University, Xiangtan 4111
ACS Appl Mater Interfaces ; 13(15): 17639-17648, 2021 Apr 21.
Article em En | MEDLINE | ID: mdl-33825459
Li-rich cathode materials possess a much higher theoretical energy density than all intercalated cathode materials currently reported and thus are considered as the most promising candidate for next-generation high-energy density Li-ion batteries. However, the rapid voltage decay and the irreversible phase transition of O3-type Li-rich cathode materials often lessen their actual energy density and limit their practical applications, and thus, effectively suppressing the voltage decay of Li-rich cathodes becomes the hotspot of the current research. Herein, the F-doped O2-type Li-rich cathode materials Li1.2Mn0.54Ni0.13Co0.13O2+δ-xFx (F-O2-LRO) are designed and prepared based on the P2-type sodium-ion cathode materials Na5/6Li1/4(Mn0.54Ni0.13Co0.13)3/4O2+δ (Na-LRO) by ion exchange. It has been found that the as-prepared F-O2-LRO exhibits excellent electrochemical performance, for example, a high discharge specific capacity of 280 mA h g-1 at 0.1 C with an initial Coulombic efficiency of 94.4%, which is obviously higher than the original LRO (77.2%). After 100 cycles, the F-O2-LRO cathode can still maintain a high capacity retention of 95% at a rate of 1 C, while the capacity retention of the original LRO is only 69.1% at the same current rate. Furthermore, the voltage difference (ΔV) of F-O2-LRO before and after cycling is only 0.268 V after 100 cycles at 1 C, which is less than that of the LRO cathode (0.681 V), indicating much lower polarization. Besides, even at a high current rate of 5 C, F-O2-LRO still displays a satisfactory discharge capacity of 210 mA h g-1 with a capacity retention of 90.1% after 100 cycles. Therefore, this work put forward a new strategy for the development and industrial application of Li-rich cathode materials in high-energy Li-ion batteries.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2021 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2021 Tipo de documento: Article País de publicação: Estados Unidos