Your browser doesn't support javascript.
loading
Model based analysis of carbon fluxes within microalgae-bacteria flocs using respirometric-titrimetric data.
Manhaeghe, Dave; Allosserie, Anton; Rousseau, Diederik P L; Van Hulle, Stijn W H.
Afiliação
  • Manhaeghe D; Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium. Electronic address: Dave.Manhaeghe@ugent.be.
  • Allosserie A; Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium.
  • Rousseau DPL; Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium.
  • Van Hulle SWH; Laboratory for Industrial Water and Ecotechnology (LIWET), Department of Green Chemistry and Technology, Ghent University, Graaf Karel de Goedelaan 5, B-8500 Kortrijk, Belgium.
Sci Total Environ ; 784: 147048, 2021 Aug 25.
Article em En | MEDLINE | ID: mdl-33894600
With the emerging need of nutrient recycling in resource recovery facilities, the use of microalgae-bacteria flocs has received considerable attention in the past few years. However, although the main biological processes are already known, the complex interactions occurring between algae and bacteria are not fully understood. In this work, a combined respirometric-titrimetric unit was used to assess the microorganisms' kinetics within microalgae-bacteria flocs under different growth regimes (i.e. photoautotrophic, heterotrophic and mixotrophic) and different ratios of inorganic (IC) to organic carbon (OC) (IC:OC-ratios). Using this respirometric-titrimetric data, a new model was developed, calibrated and successfully validated. The model takes into account the heterotrophic growth of bacteria, the photoautotrophic, heterotrophic and mixotrophic growth of algae and the production and consumption of extracellular polymeric substances (EPS) by both bacteria and algae. As such, the model can be used for detailed analysis of the carbon fluxes within microalgae-bacteria flocs in an efficient way. Model analysis revealed the high importance of the EPS regulatory mechanism. Firstly, under heterotrophic growth conditions, OC-uptake occurred during the first 10-15 min. This was linked with internal OC storage (49% of added OC) and EPS production (40%), as such providing carbon reserves which can be consumed during famine conditions. Moreover, the algae were able to compete with bacteria for OC. Secondly, under photoautotrophic conditions, algae used the added IC to grow (57% of added IC) and to produce EPS (29%), which consecutively stimulated heterotrophic bacteria growth (20%). Finally, under mixotrophic conditions, low IC:OC-ratios resulted in an extensive OC-storage and EPS production (50% of added C) and an enhanced microalgal CO2 reuse, resulting in an increased algal growth of up to 29%.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microalgas Idioma: En Revista: Sci Total Environ Ano de publicação: 2021 Tipo de documento: Article País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microalgas Idioma: En Revista: Sci Total Environ Ano de publicação: 2021 Tipo de documento: Article País de publicação: Holanda