Your browser doesn't support javascript.
loading
Diallelic self-incompatibility is the main determinant of fertilization patterns in olive orchards.
Mariotti, Roberto; Pandolfi, Saverio; De Cauwer, Isabelle; Saumitou-Laprade, Pierre; Vernet, Philippe; Rossi, Martina; Baglivo, Federica; Baldoni, Luciana; Mousavi, Soraya.
Afiliação
  • Mariotti R; Institute of Biosciences and Bioresources CNR Perugia Italy.
  • Pandolfi S; Institute of Biosciences and Bioresources CNR Perugia Italy.
  • De Cauwer I; CNRS UMR 8198 - Evo-Eco-Paleo Univ. Lille Lille France.
  • Saumitou-Laprade P; CNRS UMR 8198 - Evo-Eco-Paleo Univ. Lille Lille France.
  • Vernet P; CNRS UMR 8198 - Evo-Eco-Paleo Univ. Lille Lille France.
  • Rossi M; Institute of Biosciences and Bioresources CNR Perugia Italy.
  • Baglivo F; Institute of Biosciences and Bioresources CNR Perugia Italy.
  • Baldoni L; Institute of Biosciences and Bioresources CNR Perugia Italy.
  • Mousavi S; Institute of Biosciences and Bioresources CNR Perugia Italy.
Evol Appl ; 14(4): 983-995, 2021 Apr.
Article em En | MEDLINE | ID: mdl-33897815
Self-incompatibility (SI) in flowering plants potentially represents a major obstacle for sexual reproduction, especially when the number of S-alleles is low. The situation is extreme in the commercially important olive tree, where in vitro pollination assays suggested the existence of a diallelic SI (DSI) system involving only two groups (G1 and G2). Varieties belonging to the same SI group cannot fertilize each other, such that successful fruit production is predicted to require pollination between varieties of different groups. To test this prediction, we explored the extent to which the DSI system determines fertilization patterns under field conditions. One hundred and seventeen olive cultivars were first genotyped using 10 highly polymorphic dinucleotide Simple Sequence Repeat (SSR) markers to ascertain varietal identity. Cultivars were then phenotyped through controlled pollination tests to assign each of them to one of the two SI groups. We then collected and genotyped 1440 open pollinated embryos from five different orchards constituted of seven local cultivars with known group of incompatibility groups. Embryos genotype information were used: (i) to assign embryos to the most likely pollen donor genotype in the neighbourhood using paternity analysis, and (ii) to compare the composition of the pollen cloud genetic among recipient trees in the five sites. The paternity analysis showed that the DSI system is the main determinant of fertilization success under field open pollination conditions: G1 cultivars sired seeds exclusively on G2 cultivars, and reciprocally. No self-fertilization events were observed. Our results demonstrate that DSI is a potent force determining pollination success among varieties within olive orchards used for production. They have the potential to improve management practices by guiding the selection of compatible varieties to avoid planting orchards containing sets of varieties with strongly unbalanced SI groups, as these would lead to suboptimal olive production.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Evol Appl Ano de publicação: 2021 Tipo de documento: Article País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Evol Appl Ano de publicação: 2021 Tipo de documento: Article País de publicação: Reino Unido