Your browser doesn't support javascript.
loading
Regression plane concept for analysing continuous cellular processes with machine learning.
Szkalisity, Abel; Piccinini, Filippo; Beleon, Attila; Balassa, Tamas; Varga, Istvan Gergely; Migh, Ede; Molnar, Csaba; Paavolainen, Lassi; Timonen, Sanna; Banerjee, Indranil; Ikonen, Elina; Yamauchi, Yohei; Ando, Istvan; Peltonen, Jaakko; Pietiäinen, Vilja; Honti, Viktor; Horvath, Peter.
Afiliação
  • Szkalisity A; Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Szeged, Hungary.
  • Piccinini F; Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
  • Beleon A; Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, FC, Italy.
  • Balassa T; Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Szeged, Hungary.
  • Varga IG; Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Szeged, Hungary.
  • Migh E; Institute of Genetics, Biological Research Center (BRC), Szeged, Hungary.
  • Molnar C; Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Szeged, Hungary.
  • Paavolainen L; Synthetic and Systems Biology Unit, Biological Research Centre (BRC), Szeged, Hungary.
  • Timonen S; Institute for Molecular Medicine Finland-FIMM, Helsinki Institute of Life Science-HiLIFE, University of Helsinki, Helsinki, Finland.
  • Banerjee I; Institute for Molecular Medicine Finland-FIMM, Helsinki Institute of Life Science-HiLIFE, University of Helsinki, Helsinki, Finland.
  • Ikonen E; Indian Institute of Science Education and Research (IISER), Mohali, India.
  • Yamauchi Y; Department of Anatomy and Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
  • Ando I; School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD University Walk, Bristol, UK.
  • Peltonen J; Institute of Genetics, Biological Research Center (BRC), Szeged, Hungary.
  • Pietiäinen V; Faculty of Information Technology and Communication Sciences, Tampere University, FI-33014 Tampere University, Tampere, Finland.
  • Honti V; Department of Computer Science, Aalto University, Aalto, Finland.
  • Horvath P; Institute for Molecular Medicine Finland-FIMM, Helsinki Institute of Life Science-HiLIFE, University of Helsinki, Helsinki, Finland.
Nat Commun ; 12(1): 2532, 2021 05 05.
Article em En | MEDLINE | ID: mdl-33953203
Biological processes are inherently continuous, and the chance of phenotypic discovery is significantly restricted by discretising them. Using multi-parametric active regression we introduce the Regression Plane (RP), a user-friendly discovery tool enabling class-free phenotypic supervised machine learning, to describe and explore biological data in a continuous manner. First, we compare traditional classification with regression in a simulated experimental setup. Second, we use our framework to identify genes involved in regulating triglyceride levels in human cells. Subsequently, we analyse a time-lapse dataset on mitosis to demonstrate that the proposed methodology is capable of modelling complex processes at infinite resolution. Finally, we show that hemocyte differentiation in Drosophila melanogaster has continuous characteristics.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenômenos Biológicos / Fenômenos Fisiológicos Celulares / Aprendizado de Máquina Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Hungria País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenômenos Biológicos / Fenômenos Fisiológicos Celulares / Aprendizado de Máquina Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Hungria País de publicação: Reino Unido