Your browser doesn't support javascript.
loading
Uncovering and classifying the role of driven nodes in control of complex networks.
Shinzawa, Yuma; Akutsu, Tatsuya; Nacher, Jose C.
Afiliação
  • Shinzawa Y; Department of Information Science, Faculty of Science, Toho University, Funabashi, Japan.
  • Akutsu T; Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan. takutsu@kuicr.kyoto-u.ac.jp.
  • Nacher JC; Department of Information Science, Faculty of Science, Toho University, Funabashi, Japan. nacher@is.sci.toho-u.ac.jp.
Sci Rep ; 11(1): 9627, 2021 05 05.
Article em En | MEDLINE | ID: mdl-33953235
ABSTRACT
The widely used Maximum Matching (MM) method identifies the minimum driver nodes set to control biological and technological systems. Nevertheless, it is assumed in the MM approach that one driver node can send control signal to multiple target nodes, which might not be appropriate in certain complex networks. A recent work introduced a constraint that one driver node can control one target node, and proposed a method to identify the minimum target nodes set under such a constraint. We refer such target nodes to driven nodes. However, the driven nodes may not be uniquely determined. Here, we develop a novel algorithm to classify driven nodes in control categories. Our computational analysis on a large number of biological networks indicates that the number of driven nodes is considerably larger than the number of driver nodes, not only in all examined complete plant metabolic networks but also in several key human pathways, which firstly demonstrate the importance of use of driven nodes in analysis of real-world networks.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Japão