Your browser doesn't support javascript.
loading
Future changes to the upper ocean Western Boundary Currents across two generations of climate models.
Sen Gupta, Alex; Stellema, Annette; Pontes, Gabriel M; Taschetto, Andréa S; Vergés, Adriana; Rossi, Vincent.
Afiliação
  • Sen Gupta A; Climate Change Research Centre, University of New South Wales, Sydney, Australia. a.sengupta@unsw.edu.au.
  • Stellema A; Australian Research Council Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, Australia. a.sengupta@unsw.edu.au.
  • Pontes GM; Centre for Marine Science and Innovation, University of New South Wales, Sydney, Australia. a.sengupta@unsw.edu.au.
  • Taschetto AS; Climate Change Research Centre, University of New South Wales, Sydney, Australia.
  • Vergés A; Australian Research Council Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, Australia.
  • Rossi V; Centre for Marine Science and Innovation, University of New South Wales, Sydney, Australia.
Sci Rep ; 11(1): 9538, 2021 05 05.
Article em En | MEDLINE | ID: mdl-33953259
ABSTRACT
Western Boundary Currents (WBCs) are important for the oceanic transport of heat, dissolved gases and nutrients. They can affect regional climate and strongly influence the dispersion and distribution of marine species. Using state-of-the-art climate models from the latest and previous Climate Model Intercomparison Projects, we evaluate upper ocean circulation and examine future projections, focusing on subtropical and low-latitude WBCs. Despite their coarse resolution, climate models successfully reproduce most large-scale circulation features with ensemble mean transports typically within the range of observational uncertainty, although there is often a large spread across the models and some currents are systematically too strong or weak. Despite considerable differences in model structure, resolution and parameterisations, many currents show highly consistent projected changes across the models. For example, the East Australian Current, Brazil Current and Agulhas Current extensions are projected to intensify, while the Gulf Stream, Indonesian Throughflow and Agulhas Current are projected to weaken. Intermodel differences in most future circulation changes can be explained in part by projected changes in the large-scale surface winds. In moving to the latest model generation, despite structural model advancements, we find little systematic improvement in the simulation of ocean transports nor major differences in the projected changes.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Austrália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Austrália
...