Your browser doesn't support javascript.
loading
Perturbation of the peptidoglycan network and utilization of the signal recognition particle-dependent pathway enhances the extracellular production of a truncational mutant of CelA in Escherichia coli.
Kang, Tae-Gu; Hong, Seok-Hyun; Jeon, Gi-Beom; Yang, Yung-Hun; Kim, Sun-Ki.
Afiliação
  • Kang TG; Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea.
  • Hong SH; Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea.
  • Jeon GB; Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea.
  • Yang YH; Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea.
  • Kim SK; Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea.
J Ind Microbiol Biotechnol ; 48(5-6)2021 Jul 01.
Article em En | MEDLINE | ID: mdl-33956122
Caldicellulosiruptor bescii is the most thermophilic, cellulolytic bacterium known and has the native ability to utilize unpretreated plant biomass. Cellulase A (CelA) is the most abundant enzyme in the exoproteome of C. bescii and is primarily responsible for its cellulolytic ability. CelA contains a family 9 glycoside hydrolase and a family 48 glycoside hydrolase connected by linker regions and three carbohydrate-binding domains. A truncated version of the enzyme (TM1) containing only the endoglucanase domain is thermostable and actively degrades crystalline cellulose. A catalytically active TM1 was successfully produced via the attachment of the PelB signal peptide (P-TM1), which mediates post-translational secretion via the SecB-dependent translocation pathway. We sought to enhance the extracellular secretion of TM1 using an alternative pathway, the signal recognition particle (SRP)-dependent translocation pathway. The co-translational extracellular secretion of TM1 via the SRP pathway (D-TM1) resulted in a specific activity that was 4.9 times higher than that associated with P-TM1 overexpression. In batch fermentations, the recombinant Escherichia coli overexpressing D-TM1 produced 1.86 ± 0.06 U/ml of TM1 in the culture medium, showing a specific activity of 1.25 ± 0.05 U/mg cell, 2.7- and 3.7-fold higher than the corresponding values of the strain overexpressing P-TM1. We suggest that the TM1 secretion system developed in this study can be applied to enhance the capacity of E. coli as a microbial cell factory for the extracellular secretion of this as well as a variety proteins important for commercial production.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peptidoglicano / Celulase / Partícula de Reconhecimento de Sinal / Escherichia coli / Via Secretória Idioma: En Revista: J Ind Microbiol Biotechnol Assunto da revista: BIOTECNOLOGIA / MICROBIOLOGIA Ano de publicação: 2021 Tipo de documento: Article País de publicação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peptidoglicano / Celulase / Partícula de Reconhecimento de Sinal / Escherichia coli / Via Secretória Idioma: En Revista: J Ind Microbiol Biotechnol Assunto da revista: BIOTECNOLOGIA / MICROBIOLOGIA Ano de publicação: 2021 Tipo de documento: Article País de publicação: Alemanha