Your browser doesn't support javascript.
loading
Plant-based analogues identified as potential inhibitor against tobacco mosaic virus: A biosimulation approach.
Sharma, Jatin; Bhardwaj, Vijay Kumar; Das, Pralay; Purohit, Rituraj.
Afiliação
  • Sharma J; Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology division, CSIR-IHBT, Palampur, HP 176061, India.
  • Bhardwaj VK; Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology division, CSIR-IHBT, Palampur, HP 176061, India.
  • Das P; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India; Natural Product Chemistry and Process Development, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.
  • Purohit R; Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology division, CSIR-IHBT, Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India. Electronic address: rituraj@ihbt
Pestic Biochem Physiol ; 175: 104858, 2021 Jun.
Article em En | MEDLINE | ID: mdl-33993976
ABSTRACT
Benzosuberene compounds with a pyrrolone group adhered to it are compounds extracted from the oils of Cedrus deodara plant, that bear inhibitory capabilities. Tobacco mosaic virus is known to affect crop production every year. The currently known inhibitors against TMV have a weak inhibition effect and also tend to be toxic towards non-target living organisms as well as the environment. Thus, the requirement of non-toxic potent inhibitors is the need of the hour, which led us to test our benzosuberene molecules on the binding site of TMV and check their affinity as well as stability. The non-toxic nature of these molecules has already been experimentally established. Through in-silico analysis involving docking and simulation experiments, we compared the interaction pattern of these ligand molecules with the already present inhibitors. Our investigation proved that the reported ligands (ligands 3, 7, 9, and 17 obtained -177.103, -228.632, -184.134, and - 188.075 kJ/mol binding energies, respectively) interacted with the binding site of TMV much efficiently than the known inhibitors (Ribavirin and Zhao et al. 2020 obtained 121.561 and - 221.393 kJ/mol binding energies, respectively). Moreover, they acquired a stable conformation inside the binding pocket, where a higher number of binding site residues contributed towards interaction. Thus, their structural framework can be optimized for the exploration of their antiviral properties to develop potent botanical viricides against plant virus infection.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vírus do Mosaico do Tabaco Idioma: En Revista: Pestic Biochem Physiol Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Índia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vírus do Mosaico do Tabaco Idioma: En Revista: Pestic Biochem Physiol Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Índia