Your browser doesn't support javascript.
loading
Bis-(1,2,4-triazin-3-yl) ligand structure driven selectivity reversal between Am3+ and Cm3+: solvent extraction and DFT studies.
Bhattacharyya, Arunasis; Ansari, S A; Karthikeyan, N S; Ravichandran, C; Venkatachalapathy, B; Rao, T S; Seshadri, H; Mohapatra, P K.
Afiliação
  • Bhattacharyya A; Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai - 400 085, India. arun12@barc.gov.in mpatra@barc.gov.in.
  • Ansari SA; Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai - 400 085, India. arun12@barc.gov.in mpatra@barc.gov.in.
  • Karthikeyan NS; Easwari Engineering College, Ramapuram, Chennai - 600089, India.
  • Ravichandran C; Easwari Engineering College, Ramapuram, Chennai - 600089, India.
  • Venkatachalapathy B; Easwari Engineering College, Ramapuram, Chennai - 600089, India.
  • Rao TS; Water & Steam Chemistry Division, BARC, Kalpakkam - 603102, India.
  • Seshadri H; Safety Research Institute, Atomic Energy Regulatory Board, Kalpakkam - 603102, India.
  • Mohapatra PK; Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai - 400 085, India. arun12@barc.gov.in mpatra@barc.gov.in.
Dalton Trans ; 50(22): 7783-7790, 2021 Jun 08.
Article em En | MEDLINE | ID: mdl-33999062
Selectivity between Am3+ and Cm3+ was investigated after their aqueous complexation with three structurally tailored hydrophilic bis-(1,2,4-triazin-3-yl) ligands followed by their extraction with N,N,N'N'-tetraoctyl diglycolamide (TODGA) dissolved in an ionic liquid (C4mim·Tf2N). The three hydrophilic ligands used were SO3PhBTP, SO3PhBTBP, and SO3PhBTPhen. It was evident from the solvent extraction studies that SO3PhBTP formed a stronger complex with Cm3+ than with Am3+, but SO3PhBTPhen showed better complexation ability for Am3+ than for Cm3+, and SO3PhBTBP showed no selectivity for the two actinide ions. DFT calculations indicated that the coordinating 'N' atoms in BTP were more co-planar in the complex and this co-planarity was higher in the Cm3+ complex as compared to that in Am3+. In the case of BTBP and BTPhen ligands, on the other hand, the co-planarity was more pronounced in the Am3+ complexes. Mayer's bond order calculations of M-N bonds in the complexes also indicated a reversal of the complexation ability of the BTP and BTPhen ligands for Am3+ and Cm3+. Calculations of the complexation energies further supported the higher selectivity of the BTP ligand for Am3+ by -52.0 kJ mol-1, and better selectivity of the BTPhen ligand for Cm3+ by -24.7 kJ mol-1.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Dalton Trans Assunto da revista: QUIMICA Ano de publicação: 2021 Tipo de documento: Article País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Dalton Trans Assunto da revista: QUIMICA Ano de publicação: 2021 Tipo de documento: Article País de publicação: Reino Unido