Your browser doesn't support javascript.
loading
Theoretical and Experimental Analysis of Thin-Walled Curved Rectangular Box Beam under In-Plane Bending.
Yanze, Long; Ke, Zhang; Huaitao, Shi; Songhua, Li; Xiaochen, Zhang.
Afiliação
  • Yanze L; School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China.
  • Ke Z; School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China.
  • Huaitao S; School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China.
  • Songhua L; School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China.
  • Xiaochen Z; School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China.
Scanning ; 2021: 8867142, 2021.
Article em En | MEDLINE | ID: mdl-34012499
ABSTRACT
Thin-walled curved box beam structures especially rectangular members are widely used in mechanical and architectural structures and other engineering fields because of their high strength-to-weight ratios. In this paper, we present experimental and theoretical analysis methods for the static analysis of thin-walled curved rectangular-box beams under in-plane bending based on 11 feature deformation modes. As to the numerical investigations, we explored the convergence and accuracy analysis by normal finite element analysis, higher-order assumed strain plane element, deep collocation method element, and inverse finite element method, respectively. The out-of-plane and in-plane characteristic deformation vector modes derived by the theoretical formula are superimposed by transforming the axial, tangential, and the normal deformation values into scalar tensile and compression amounts. A one-dimensional deformation experimental test theory is first proposed, formulating the specific contributions of various deformation modes. In this way, the magnitude and trend of the influence of each low-order deformation mode on the distortion and warping in the actual deformation are determined, and the significance of distortion and warping in the actual curved beams subjected to the in-plane loads is verified. This study strengthens the deformation theory of rectangular box-type thin-walled curved beams under in-plane bending, thus providing a reference for analyzing the mechanical properties of curved-beam structures.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Scanning Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Scanning Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China