Your browser doesn't support javascript.
loading
Abnormal center of mass feedback responses during balance: A potential biomarker of falls in Parkinson's disease.
McKay, J Lucas; Lang, Kimberly C; Bong, Sistania M; Hackney, Madeleine E; Factor, Stewart A; Ting, Lena H.
Afiliação
  • McKay JL; Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, United States of America.
  • Lang KC; Jean & Paul Amos PD & Movement Disorders Program, Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, United States of America.
  • Bong SM; Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, Georgia, United States of America.
  • Hackney ME; Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, United States of America.
  • Factor SA; Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Tech, Atlanta, Georgia, United States of America.
  • Ting LH; Department of Medicine, Division of General Medicine and Geriatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America.
PLoS One ; 16(5): e0252119, 2021.
Article em En | MEDLINE | ID: mdl-34043678
ABSTRACT
Although Parkinson disease (PD) causes profound balance impairments, we know very little about how PD impacts the sensorimotor networks we rely on for automatically maintaining balance control. In young healthy people and animals, muscles are activated in a precise temporal and spatial organization when the center of body mass (CoM) is unexpectedly moved that is largely automatic and determined by feedback of CoM motion. Here, we show that PD alters the sensitivity of the sensorimotor feedback transformation. Importantly, sensorimotor feedback transformations for balance in PD remain temporally precise, but become spatially diffuse by recruiting additional muscle activity in antagonist muscles during balance responses. The abnormal antagonist muscle activity remains precisely time-locked to sensorimotor feedback signals encoding undesirable motion of the body in space. Further, among people with PD, the sensitivity of abnormal antagonist muscle activity to CoM motion varies directly with the number of recent falls. Our work shows that in people with PD, sensorimotor feedback transformations for balance are intact but disinhibited in antagonist muscles, likely contributing to balance deficits and falls.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Equilíbrio Postural Limite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Parkinson / Equilíbrio Postural Limite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos
...