Studies of Defect Structure in Epitaxial AlN/GaN Films Grown on (111) 3C-SiC.
Nanomaterials (Basel)
; 11(5)2021 May 14.
Article
em En
| MEDLINE
| ID: mdl-34069169
Several aspects such as the growth relation between the layers of the GaN/AlN/SiC heterostructure, the consistency of the interfaces, and elemental diffusion are achieved by High Resolution Transmission Electron Microscopy (HR-TEM). In addition, the dislocation densities together with the defect correlation lengths are investigated via High-Resolution X-ray Diffraction (HR-XRD) and the characteristic positron diffusion length is achieved by Doppler Broadening Spectroscopy (DBS). Moreover, a comparative analysis with our previous work (i.e., GaN/AlN/Si and GaN/AlN/Al2O3) has been carried out. Within the epitaxial GaN layer defined by the relationship F4¯3m (111) 3C-SiC || P63mc (0002) AlN || P63mc (0002) GaN, the total dislocation density has been assessed as being 1.47 × 1010 cm-2. Compared with previously investigated heterostructures (on Si and Al2O3 substrates), the obtained dislocation correlation lengths (Le = 171 nm and Ls =288 nm) and the mean distance between two dislocations (rd = 82 nm) are higher. This reveals an improved crystal quality of the GaN with SiC as a growth template. In addition, the DBS measurements upheld the aforementioned results with a higher effective positron diffusion length LeffGaN2 = 75 ± 20 nm for the GaN layer.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Nanomaterials (Basel)
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
Romênia
País de publicação:
Suíça