Your browser doesn't support javascript.
loading
Dynamical characterization of antiviral effects in COVID-19.
Abuin, Pablo; Anderson, Alejandro; Ferramosca, Antonio; Hernandez-Vargas, Esteban A; Gonzalez, Alejandro H.
Afiliação
  • Abuin P; Institute of Technological Development for the Chemical Industry (INTEC), CONICET-UNL, Santa Fe, Argentina.
  • Anderson A; Institute of Technological Development for the Chemical Industry (INTEC), CONICET-UNL, Santa Fe, Argentina.
  • Ferramosca A; Department of Management, Information and Production Engineering, University of Bergamo, Via Marconi 5, 24044, Dalmine (BG), Italy.
  • Hernandez-Vargas EA; Instituto de Matematicas, UNAM, Unidad Juriquilla, 76230 Queretaro, Mexico.
  • Gonzalez AH; Institute of Technological Development for the Chemical Industry (INTEC), CONICET-UNL, Santa Fe, Argentina.
Annu Rev Control ; 52: 587-601, 2021.
Article em En | MEDLINE | ID: mdl-34093069
Mathematical models describing SARS-CoV-2 dynamics and the corresponding immune responses in patients with COVID-19 can be critical to evaluate possible clinical outcomes of antiviral treatments. In this work, based on the concept of virus spreadability in the host, antiviral effectiveness thresholds are determined to establish whether or not a treatment will be able to clear the infection. In addition, the virus dynamic in the host - including the time-to-peak and the final monotonically decreasing behavior - is characterized as a function of the time to treatment initiation. Simulation results, based on nine patient data, show the potential clinical benefits of a treatment classification according to patient critical parameters. This study is aimed at paving the way for the different antivirals being developed to tackle SARS-CoV-2.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Annu Rev Control Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Argentina País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Annu Rev Control Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Argentina País de publicação: Reino Unido