Your browser doesn't support javascript.
loading
Unlocking big data doubled the accuracy in predicting the grain yield in hybrid wheat.
Zhao, Yusheng; Thorwarth, Patrick; Jiang, Yong; Philipp, Norman; Schulthess, Albert W; Gils, Mario; Boeven, Philipp H G; Longin, C Friedrich H; Schacht, Johannes; Ebmeyer, Erhard; Korzun, Viktor; Mirdita, Vilson; Dörnte, Jost; Avenhaus, Ulrike; Horbach, Ralf; Cöster, Hilmar; Holzapfel, Josef; Ramgraber, Ludwig; Kühnle, Simon; Varenne, Pierrick; Starke, Anne; Schürmann, Friederike; Beier, Sebastian; Scholz, Uwe; Liu, Fang; Schmidt, Renate H; Reif, Jochen C.
Afiliação
  • Zhao Y; Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Stadt Seeland, Germany.
  • Thorwarth P; State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70593 Stuttgart, Germany.
  • Jiang Y; Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Stadt Seeland, Germany.
  • Philipp N; Syngenta Seeds GmbH, Kroppenstedterstr. 4, 39398 Hadmersleben, Germany.
  • Schulthess AW; Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Stadt Seeland, Germany.
  • Gils M; Nordsaat Saatzucht GmbH, , Böhnshauserstr. 1, 38895 Langenstein, Germany.
  • Boeven PHG; Limagrain GmbH, Salderstr. 4, 31226 Peine-Rosenthal, Germany.
  • Longin CFH; State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70593 Stuttgart, Germany.
  • Schacht J; Limagrain GmbH, Salderstr. 4, 31226 Peine-Rosenthal, Germany.
  • Ebmeyer E; KWS LOCHOW GmbH, Ferdinand-von-Lochow-Str. 5, 29303 Bergen, Germany.
  • Korzun V; KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, 37574 Einbeck, Germany.
  • Mirdita V; Federal State Budgetary Institution of Science Federal Research Center, "Kazan Scientific Center of Russian Academy of Sciences," ul. Lobachevskogo, 2/31, Kazan, 420111 Tatarstan, Russian Federation.
  • Dörnte J; BASF Agricultural Solutions Seed GmbH, OT Gatersleben, Am Schwabeplan 8, 06466 Seeland, Germany.
  • Avenhaus U; Deutsche Saatveredelung AG, Leutewitz 26, 01665 Käbschütztal, Germany.
  • Horbach R; W. von Borries-Eckendorf GmbH & Co. KG, Hovedisserstr. 92, 33818 Leopoldshöhe, Germany.
  • Cöster H; Saatzucht Bauer GmbH & Co. KG, Hofmarkstr.1, 93083 Niederträubling, Germany.
  • Holzapfel J; RAGT2n, Steinesche 5a, 38855 Silstedt, Germany.
  • Ramgraber L; Secobra Saatzucht GmbH, Feldkirchen 3, 85368 Moosburg, Germany.
  • Kühnle S; Saatzucht Josef Breun GmbH & Co. KG, Amselweg 1, 91074 Herzogenaurach, Germany.
  • Varenne P; Pflanzenzucht Oberlimpurg, Oberlimpurg 2, 74523 Schwäbisch Hall, Germany.
  • Starke A; Limagrain Europe, Ferme de l'Etang BP3, 77390 Verneuil l'Etang, France.
  • Schürmann F; Limagrain GmbH, Salderstr. 4, 31226 Peine-Rosenthal, Germany.
  • Beier S; Secobra Saatzucht GmbH, Feldkirchen 3, 85368 Moosburg, Germany.
  • Scholz U; Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Stadt Seeland, Germany.
  • Liu F; Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Stadt Seeland, Germany.
  • Schmidt RH; Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Stadt Seeland, Germany.
  • Reif JC; Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Stadt Seeland, Germany.
Sci Adv ; 7(24)2021 Jun.
Article em En | MEDLINE | ID: mdl-34117061
The potential of big data to support businesses has been demonstrated in financial services, manufacturing, and telecommunications. Here, we report on efforts to enter a new data era in plant breeding by collecting genomic and phenotypic information from 12,858 wheat genotypes representing 6575 single-cross hybrids and 6283 inbred lines that were evaluated in six experimental series for yield in field trials encompassing ~125,000 plots. Integrating data resulted in twofold higher prediction ability compared with cases in which hybrid performance was predicted across individual experimental series. Our results suggest that combining data across breeding programs is a particularly appropriate strategy to exploit the potential of big data for predictive plant breeding. This paradigm shift can contribute to increasing yield and resilience, which is needed to feed the growing world population.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Sci Adv Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Alemanha País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Sci Adv Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Alemanha País de publicação: Estados Unidos