Your browser doesn't support javascript.
loading
Deep-Level Transient Spectroscopy for Effective Passivator Selection in Perovskite Solar Cells to Attain High Efficiency over 23.
Ren, Xiaodong; Zhang, Bobo; Zhang, Lu; Wen, Jialun; Che, Bo; Bai, Dongliang; You, Jiaxue; Chen, Tao; Liu, Shengzhong Frank.
Afiliação
  • Ren X; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University,
  • Zhang B; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University,
  • Zhang L; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University,
  • Wen J; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University,
  • Che B; Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China.
  • Bai D; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University,
  • You J; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University,
  • Chen T; Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China.
  • Liu SF; Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University,
ChemSusChem ; 14(15): 3182-3189, 2021 Aug 09.
Article em En | MEDLINE | ID: mdl-34124848
ABSTRACT
Most studies choose passivators essentially in a trial-and-error fashion in an attempt to attain high efficiency in perovskite solar cells (PSCs). Using deep-level transient spectroscopy (DLTS) measurements, the type of defects in perovskite films was determined to guide the passivator selection for PSCs. Three kinds of positively charged defects were found in the target PSC system. Fluorinated phenylethylamine hydroiodide (FPEAI) was chosen to passivate the surface defects due to the electronegativity and hydrophobicity of fluorine. Due to the decreased surface roughness, increased hydrophobicity, lowered defect density, and improved carrier dynamics as observed by ultrafast transient absorption spectroscopy (TAS), a PSC with meta-F-PEAI had the best efficiency over 23 % with open-circuit voltage of 1.155 V and fill factor of 80.15 %. In addition, the long-term stability of the PSC was significantly improved. The present work provides a new means to select the best passivator for different types of defects.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ChemSusChem Assunto da revista: QUIMICA / TOXICOLOGIA Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ChemSusChem Assunto da revista: QUIMICA / TOXICOLOGIA Ano de publicação: 2021 Tipo de documento: Article