Your browser doesn't support javascript.
loading
Viscoelastic surface electrode arrays to interface with viscoelastic tissues.
Tringides, Christina M; Vachicouras, Nicolas; de Lázaro, Irene; Wang, Hua; Trouillet, Alix; Seo, Bo Ri; Elosegui-Artola, Alberto; Fallegger, Florian; Shin, Yuyoung; Casiraghi, Cinzia; Kostarelos, Kostas; Lacour, Stéphanie P; Mooney, David J.
Afiliação
  • Tringides CM; Harvard Program in Biophysics, Harvard University, Cambridge, MA, USA.
  • Vachicouras N; Harvard-MIT Division in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
  • de Lázaro I; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA.
  • Wang H; Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
  • Trouillet A; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA.
  • Seo BR; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
  • Elosegui-Artola A; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA.
  • Fallegger F; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
  • Shin Y; Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
  • Casiraghi C; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA.
  • Kostarelos K; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
  • Lacour SP; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA.
  • Mooney DJ; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
Nat Nanotechnol ; 16(9): 1019-1029, 2021 09.
Article em En | MEDLINE | ID: mdl-34140673
ABSTRACT
Living tissues are non-linearly elastic materials that exhibit viscoelasticity and plasticity. Man-made, implantable bioelectronic arrays mainly rely on rigid or elastic encapsulation materials and stiff films of ductile metals that can be manipulated with microscopic precision to offer reliable electrical properties. In this study, we have engineered a surface microelectrode array that replaces the traditional encapsulation and conductive components with viscoelastic materials. Our array overcomes previous limitations in matching the stiffness and relaxation behaviour of soft biological tissues by using hydrogels as the outer layers. We have introduced a hydrogel-based conductor made from an ionically conductive alginate matrix enhanced with carbon nanomaterials, which provide electrical percolation even at low loading fractions. Our combination of conducting and insulating viscoelastic materials, with top-down manufacturing, allows for the fabrication of electrode arrays compatible with standard electrophysiology platforms. Our arrays intimately conform to the convoluted surface of the heart or brain cortex and offer promising bioengineering applications for recording and stimulation.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hidrogéis / Nanoestruturas / Substâncias Viscoelásticas / Bioengenharia Idioma: En Revista: Nat Nanotechnol Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hidrogéis / Nanoestruturas / Substâncias Viscoelásticas / Bioengenharia Idioma: En Revista: Nat Nanotechnol Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos