Your browser doesn't support javascript.
loading
Machine learning based prediction of lattice thermal conductivity for half-Heusler compounds using atomic information.
Miyazaki, Hidetoshi; Tamura, Tomoyuki; Mikami, Masashi; Watanabe, Kosuke; Ide, Naoki; Ozkendir, Osman Murat; Nishino, Yoichi.
Afiliação
  • Miyazaki H; Department of Physical Science and Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan. miyazaki@nitech.ac.jp.
  • Tamura T; Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan. miyazaki@nitech.ac.jp.
  • Mikami M; Department of Physical Science and Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan.
  • Watanabe K; National Institute of Advanced Industrial Science and Technology, 2266-98 Anagahora, Shimoshidami, Moriyama, Nagoya, 463-8560, Japan.
  • Ide N; Department of Physical Science and Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan.
  • Ozkendir OM; Integrated Research Center for Energy and Environment, Kyushu Institute of Technology, 1-1 Sensui, Tobata-ku, Kitakyushu, Fukuoka, 804-8550, Japan.
  • Nishino Y; Department of Physical Science and Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan.
Sci Rep ; 11(1): 13410, 2021 Jun 28.
Article em En | MEDLINE | ID: mdl-34183699
ABSTRACT
Half-Heusler compound has drawn attention in a variety of fields as a candidate material for thermoelectric energy conversion and spintronics technology. When the half-Heusler compound is incorporated into the device, the control of high lattice thermal conductivity owing to high crystal symmetry is a challenge for the thermal manager of the device. The calculation for the prediction of lattice thermal conductivity is an important physical parameter for controlling the thermal management of the device. We examined whether lattice thermal conductivity prediction by machine learning was possible on the basis of only the atomic information of constituent elements for thermal conductivity calculated by the density functional theory in various half-Heusler compounds. Consequently, we constructed a machine learning model, which can predict the lattice thermal conductivity with high accuracy from the information of only atomic radius and atomic mass of each site in the half-Heusler type crystal structure. Applying our results, the lattice thermal conductivity for an unknown half-Heusler compound can be immediately predicted. In the future, low-cost and short-time development of new functional materials can be realized, leading to breakthroughs in the search of novel functional materials.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Sci Rep Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Japão País de publicação: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Sci Rep Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Japão País de publicação: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM