Your browser doesn't support javascript.
loading
Characteristics and source attribution of PM2.5 during 2016 G20 Summit in Hangzhou: Efficacy of radical measures to reduce source emissions.
Chen, Ke; Metcalfe, Sarah E; Yu, Huan; Xu, Jingsha; Xu, Honghui; Ji, Dongsheng; Wang, Chengjun; Xiao, Hang; He, Jun.
Afiliação
  • Chen K; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China.
  • Metcalfe SE; School of Geography, University of Nottingham, Nottingham, NG7 2RD, UK.
  • Yu H; Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China.
  • Xu J; School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
  • Xu H; School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom; Zhejiang Institute of Metrological Sciences, Hangzhou, 310008, China.
  • Ji D; State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China.
  • Wang C; College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China. Electronic address: cjwang@scuec.edu.cn.
  • Xiao H; Centre for Excellence in Regional Atmos. Environ. Institute of Urban Environment, Chinese Academy Sciences, Xiamen, 361021, China.
  • He J; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo, 315100, China; Key Laboratory of Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo, 315100, China. Electronic add
J Environ Sci (China) ; 106: 47-65, 2021 Aug.
Article em En | MEDLINE | ID: mdl-34210439
ABSTRACT
A field campaign was conducted to study the PM2.5 and atmospheric gases and aerosol's components to evaluate the efficacy of radical measures implemented by the Chinese government to improve air quality during the 2016 G20 Summit in Hangzhou China. The lower level of PM2.5 (32.48 ± 11.03 µg/m3) observed during the control period compared to pre-control and post-control periods showed that PM2.5 was alleviated by control policies. Based on the mass concentrations of particulate components, the emissions of PM2.5 from local sources including fossil fuel, coal combustion, industry and construction were effectively reduced, but non-exhaust emission was not reduced as effectively as expected. The accumulation of SNA (SO42-, NO3-, NH4+) was observed during the control period, due to the favourable synoptic weather conditions for photochemical reactions and heterogeneous hydrolysis. Because of transboundary transport during the control period, air masses from remote areas contributed significantly to local PM2.5. Although, secondary organic carbon (OCsec) exhibited more sensitivity than primary organic carbon (OCpri) to control measures, and the increased nitrogen oxidation ratio (NOR) implied the regional transport of aged secondary aerosols to the study area. Overall, the results from various approaches revealed that local pollution sources were kept under control, indicating that the implementation of mitigation measures were helpful in improving the air quality of Hangzhou during G20 summit. To reduce ambient levels of PM2.5 further in Hangzhou, regional control policies may have to be taken so as to reduce the impact of long-range transport of air masses from inland China.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Atmosféricos / Poluição do Ar Tipo de estudo: Prognostic_studies País/Região como assunto: Asia Idioma: En Revista: J Environ Sci (China) Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Atmosféricos / Poluição do Ar Tipo de estudo: Prognostic_studies País/Região como assunto: Asia Idioma: En Revista: J Environ Sci (China) Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2021 Tipo de documento: Article País de afiliação: China