Dipeptidyl peptidase 4 contributes to Alzheimer's disease-like defects in a mouse model and is increased in sporadic Alzheimer's disease brains.
J Biol Chem
; 297(2): 100963, 2021 08.
Article
em En
| MEDLINE
| ID: mdl-34265307
The amyloid cascade hypothesis, which proposes a prominent role for full-length amyloid ß peptides in Alzheimer's disease, is currently being questioned. In addition to full-length amyloid ß peptide, several N-terminally truncated fragments of amyloid ß peptide could well contribute to Alzheimer's disease setting and/or progression. Among them, pyroGlu3-amyloid ß peptide appears to be one of the main components of early anatomical lesions in Alzheimer's disease-affected brains. Little is known about the proteolytic activities that could account for the N-terminal truncations of full-length amyloid ß, but they appear as the rate-limiting enzymes yielding the Glu3-amyloid ß peptide sequence that undergoes subsequent cyclization by glutaminyl cyclase, thereby yielding pyroGlu3-amyloid ß. Here, we investigated the contribution of dipeptidyl peptidase 4 in Glu3-amyloid ß peptide formation and the functional influence of its genetic depletion or pharmacological blockade on spine maturation as well as on pyroGlu3-amyloid ß peptide and amyloid ß 42-positive plaques and amyloid ß 42 load in the triple transgenic Alzheimer's disease mouse model. Furthermore, we examined whether reduction of dipeptidyl peptidase 4 could rescue learning and memory deficits displayed by these mice. Our data establish that dipeptidyl peptidase 4 reduction alleviates anatomical, biochemical, and behavioral Alzheimer's disease-related defects. Furthermore, we demonstrate that dipeptidyl peptidase 4 activity is increased early in sporadic Alzheimer's disease brains. Thus, our data demonstrate that dipeptidyl peptidase 4 participates in pyroGlu3-amyloid ß peptide formation and that targeting this peptidase could be considered as an alternative strategy to interfere with Alzheimer's disease progression.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Doença de Alzheimer
Limite:
Animals
/
Humans
Idioma:
En
Revista:
J Biol Chem
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
França
País de publicação:
Estados Unidos