Your browser doesn't support javascript.
loading
Dipeptidyl peptidase 4 contributes to Alzheimer's disease-like defects in a mouse model and is increased in sporadic Alzheimer's disease brains.
Valverde, Audrey; Dunys, Julie; Lorivel, Thomas; Debayle, Delphine; Gay, Anne-Sophie; Caillava, Céline; Chami, Mounia; Checler, Frédéric.
Afiliação
  • Valverde A; Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France.
  • Dunys J; Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France.
  • Lorivel T; Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France.
  • Debayle D; Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France.
  • Gay AS; Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France.
  • Caillava C; Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France.
  • Chami M; Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France.
  • Checler F; Team Labeled "Laboratory of Excellence (LABEX) Distalz", INSERM, CNRS, IPMC, Université Côte d'Azur, Sophia-Antipolis, Valbonne, France. Electronic address: checler@ipmc.cnrs.fr.
J Biol Chem ; 297(2): 100963, 2021 08.
Article em En | MEDLINE | ID: mdl-34265307
The amyloid cascade hypothesis, which proposes a prominent role for full-length amyloid ß peptides in Alzheimer's disease, is currently being questioned. In addition to full-length amyloid ß peptide, several N-terminally truncated fragments of amyloid ß peptide could well contribute to Alzheimer's disease setting and/or progression. Among them, pyroGlu3-amyloid ß peptide appears to be one of the main components of early anatomical lesions in Alzheimer's disease-affected brains. Little is known about the proteolytic activities that could account for the N-terminal truncations of full-length amyloid ß, but they appear as the rate-limiting enzymes yielding the Glu3-amyloid ß peptide sequence that undergoes subsequent cyclization by glutaminyl cyclase, thereby yielding pyroGlu3-amyloid ß. Here, we investigated the contribution of dipeptidyl peptidase 4 in Glu3-amyloid ß peptide formation and the functional influence of its genetic depletion or pharmacological blockade on spine maturation as well as on pyroGlu3-amyloid ß peptide and amyloid ß 42-positive plaques and amyloid ß 42 load in the triple transgenic Alzheimer's disease mouse model. Furthermore, we examined whether reduction of dipeptidyl peptidase 4 could rescue learning and memory deficits displayed by these mice. Our data establish that dipeptidyl peptidase 4 reduction alleviates anatomical, biochemical, and behavioral Alzheimer's disease-related defects. Furthermore, we demonstrate that dipeptidyl peptidase 4 activity is increased early in sporadic Alzheimer's disease brains. Thus, our data demonstrate that dipeptidyl peptidase 4 participates in pyroGlu3-amyloid ß peptide formation and that targeting this peptidase could be considered as an alternative strategy to interfere with Alzheimer's disease progression.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Alzheimer Limite: Animals / Humans Idioma: En Revista: J Biol Chem Ano de publicação: 2021 Tipo de documento: Article País de afiliação: França País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doença de Alzheimer Limite: Animals / Humans Idioma: En Revista: J Biol Chem Ano de publicação: 2021 Tipo de documento: Article País de afiliação: França País de publicação: Estados Unidos