Significantly Raised Visible-Light Photocatalytic H2 Evolution on a 2D/2D ReS2 /In2 ZnS4 van der Waals Heterostructure.
Small
; 17(32): e2100296, 2021 Aug.
Article
em En
| MEDLINE
| ID: mdl-34270858
Owing to dwindling fossil fuels reserves, the development of alternative renewable energy sources is globally important. Photocatalytic hydrogen (H2 ) evolution represents a practical and affordable alternative to convert sunlight into carbon-free H2 fuel. Recently, 2D/2D van der Waals heterostructures (vdWHs) have attracted significant research attention for photocatalysis. Here, for the first time a ReS2 /In2 ZnS4 2D/2D vdWH synthesized via a facile physical mixing is reported. It exhibits a highly promoted photocatalytic H2 -evolution rate of 2515 µmol h-1 g-1 . Importantly, this exceeds that for pristine In2 ZnS4 by about 22.66 times. This, therefore, makes ReS2 /In2 ZnS4 one of the most efficient In2 ZnS4 -based photocatalysts without noble-metal cocatalysts. Advanced characterizations and theoretical computations results show that interlayer electronic interaction within ReS2 /In2 ZnS4 vdWH and atomic-level S active centers along the edges of ReS2 NSs work collaboratively to result in the boosted light-induced H2 evolution. Results will be of immediate benefit in the rational design and preparation of vdWHs for applications in catalysis/(opto)electronics.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Small
Assunto da revista:
ENGENHARIA BIOMEDICA
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
Austrália
País de publicação:
Alemanha