Your browser doesn't support javascript.
loading
Translocation Dynamics of High-Internal Phase Double Emulsions in Narrow Channels.
Montessori, Andrea; Tiribocchi, Adriano; Bogdan, Michal; Bonaccorso, Fabio; Lauricella, Marco; Guzowski, Jan; Succi, Sauro.
Afiliação
  • Montessori A; Istituto per le Applicazioni del Calcolo CNR, Via dei Taurini 19, Rome 00185, Italy.
  • Tiribocchi A; Istituto per le Applicazioni del Calcolo CNR, Via dei Taurini 19, Rome 00185, Italy.
  • Bogdan M; Center for Life Nanoscience at la Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 295, Rome 00161, Italy.
  • Bonaccorso F; Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
  • Lauricella M; Istituto per le Applicazioni del Calcolo CNR, Via dei Taurini 19, Rome 00185, Italy.
  • Guzowski J; Center for Life Nanoscience at la Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 295, Rome 00161, Italy.
  • Succi S; Dipartimento di Fisica, Università degli Studi di Roma "Tor Vergata", Via della Ricerca Scientifica 1, Rome 00133, Italy.
Langmuir ; 37(30): 9026-9033, 2021 08 03.
Article em En | MEDLINE | ID: mdl-34291636
ABSTRACT
We numerically study the translocation dynamics of double emulsion drops with multiple close-packed inner droplets within constrictions. Such liquid architectures, which we refer to as HIPdEs (high-internal phase double emulsions), consist of a ternary fluid, in which monodisperse droplets are encapsulated within a larger drop in turn immersed in a bulk fluid. Extensive two-dimensional lattice Boltzmann simulations show that if the area fraction of the internal drops is close to the packing fraction limit of hard spheres and the height of the channel is much smaller than the typical size of the emulsion, the crossing yields permanent shape deformations persistent over long periods of time. Morphological changes and rheological response are quantitatively assessed in terms of the structure of the velocity field, circularity of the emulsion, and rate of energy dissipated by viscous forces. Our results may be used to improve the design of soft mesoscale porous materials, which employ HIPdEs as templates for tissue engineering applications.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Engenharia Tecidual Idioma: En Revista: Langmuir Assunto da revista: QUIMICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Engenharia Tecidual Idioma: En Revista: Langmuir Assunto da revista: QUIMICA Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Itália