Your browser doesn't support javascript.
loading
Differential but Concerted Expression of HSD17B2, HSD17B3, SHBG and SRD5A1 Testosterone Tetrad Modulate Therapy Response and Susceptibility to Disease Relapse in Patients with Prostate Cancer.
Bamodu, Oluwaseun Adebayo; Tzou, Kai-Yi; Lin, Chia-Da; Hu, Su-Wei; Wang, Yuan-Hung; Wu, Wen-Ling; Chen, Kuan-Chou; Wu, Chia-Chang.
Afiliação
  • Bamodu OA; Department of Urology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
  • Tzou KY; Department of Medical Research and Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
  • Lin CD; Department of Hematology and Oncology, Cancer Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
  • Hu SW; Department of Urology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
  • Wang YH; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei City 11031, Taiwan.
  • Wu WL; Department of Urology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
  • Chen KC; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei City 11031, Taiwan.
  • Wu CC; Department of Urology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 23561, Taiwan.
Cancers (Basel) ; 13(14)2021 Jul 12.
Article em En | MEDLINE | ID: mdl-34298692
Background: Testosterone plays a critical role in prostate development and pathology. However, the impact of the molecular interplay between testosterone-associated genes on therapy response and susceptibility to disease relapse in PCa patients remains underexplored. Objective: This study investigated the role of dysregulated or aberrantly expressed testosterone-associated genes in the enhanced dissemination, phenoconversion, and therapy response of treatment-resistant advanced or recurrent PCa. Methods: Employing a combination of multi-omics big data analyses, in vitro, ex vivo, and in vivo assays, we assessed the probable roles of HSD17B2, HSD17B3, SHBG, and SRD5A1-mediated testosterone metabolism in the progression, therapy response, and prognosis of advanced or castration-resistant PCa (CRPC). Results: Our bioinformatics-aided gene expression profiling and immunohistochemical staining showed that the aberrant expression of the HSD17B2, HSD17B3, SHBG, and SRD5A1 testosterone metabolic tetrad characterize androgen-driven PCa and is associated with disease progression. Reanalysis of the TCGA PRAD cohort (n = 497) showed that patients with SRD5A1-dominant high expression of the tetrad exhibited worse mid-term to long-term (≥5 years) overall survival, with a profoundly shorter time to recurrence, compared to those with low expression. More so, we observed a strong association between enhanced HSD17B2/SRD5A1 signaling and metastasis to distant lymph nodes (M1a) and bones (M1b), while upregulated HSD17B3/SHBG signaling correlated more with negative metastasis (M0) status. Interestingly, increased SHBG/SRD5A1 ratio was associated with metastasis to distant organs (M1c), while elevated SRD5A1/SHBG ratio was associated with positive biochemical recurrence (BCR) status, and shorter time to BCR. Molecular enrichment and protein-protein connectivity network analyses showed that the androgenic tetrad regulates testosterone metabolism and cross-talks with modulators of drug response, effectors of cell cycle progression, proliferation or cell motility, and activators/mediators of cancer stemness. Moreover, of clinical relevance, SHBG ectopic expression (SHBG_OE) or SRD5A1 knockout (sgSRD5A1) induced the acquisition of spindle fibroblastoid morphology by the round/polygonal metastatic PC-3 and LNCaP cells, attenuated their migration and invasion capability, and significantly suppressed their ability to form primary or secondary tumorspheres, with concomitant downregulation of stemness KLF4, OCT3/4, and drug resistance ABCC1, ABCB1 proteins expression levels. We also showed that metronomic dutasteride synergistically enhanced the anticancer effect of low-dose docetaxel, in vitro, and in vivo. Conclusion: These data provide proof of concept that re-reprogramming of testosterone metabolism through "SRD5A1 withdrawal" or "SHBG induction" is a workable therapeutic strategy for shutting down androgen-driven oncogenic signals, reversing treatment resistance, and repressing the metastatic/recurrent phenotypes of patients with PCa.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Cancers (Basel) Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Taiwan País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Cancers (Basel) Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Taiwan País de publicação: Suíça