Cross-validation of a machine learning algorithm that determines anterior cruciate ligament rehabilitation status and evaluation of its ability to predict future injury.
Sports Biomech
; 22(1): 91-101, 2023 Jan.
Article
em En
| MEDLINE
| ID: mdl-34323653
Classification algorithms determine the similarity of an observation to defined classes, e.g., injured or healthy athletes, and can highlight treatment targets or assess progress of a treatment. The primary aim was to cross-validate a previously developed classification algorithm using a different sample, while a secondary aim was to examine its ability to predict future ACL injuries. The examined outcome measure was 'healthy-limb' class membership probability, which was compared between a cohort of athletes without previous or future (No Injury) previous (PACL) and future ACL injury (FACL). The No Injury group had significantly higher probabilities than the PACL (p < 0.001; medium effect) and FACL group (p ≤ 0.045; small effect). The ability to predict group membership was poor for the PACL (area under curve [AUC]; 0.61
AssuntosPalavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Traumatismos em Atletas
/
Lesões do Ligamento Cruzado Anterior
Limite:
Humans
Idioma:
En
Revista:
Sports Biomech
Assunto da revista:
MEDICINA ESPORTIVA
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Irlanda
País de publicação:
Reino Unido
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Traumatismos em Atletas
/
Lesões do Ligamento Cruzado Anterior
Limite:
Humans
Idioma:
En
Revista:
Sports Biomech
Assunto da revista:
MEDICINA ESPORTIVA
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Irlanda
País de publicação:
Reino Unido