Silicon-coupled tantalum pentoxide microresonators with broadband low thermo-optic coefficient.
Opt Lett
; 46(15): 3813-3816, 2021 Aug 01.
Article
em En
| MEDLINE
| ID: mdl-34329288
Stable microresonators are important integrated photonics components but are difficult to achieve on silicon-on-insulator due to silicon intrinsic properties. In this work, we demonstrate broadband thermally stable tantalum pentoxide microresonators directly coupled to silicon waveguides using a micro-trench co-integration method. The method combines in-foundry silicon processing with a single step backend thin-film deposition. The passive response of the microresonator and its thermal behavior are investigated. We show that the microresonator can operate in the overcoupled regime as well as near the critical coupling point, boasting an extinction ratio over 25 dB with no higher-order mode excitation. The temperature dependent wavelength shift is measured to be as low as 8.9 pm/K and remains below 10 pm/K over a 120 nm bandwidth.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Opt Lett
Ano de publicação:
2021
Tipo de documento:
Article
País de publicação:
Estados Unidos