Your browser doesn't support javascript.
loading
Weighted Lindley frailty model: estimation and application to lung cancer data.
Mota, Alex; Milani, Eder A; Calsavara, Vinicius F; Tomazella, Vera L D; Leão, Jeremias; Ramos, Pedro L; Ferreira, Paulo H; Louzada, Francisco.
Afiliação
  • Mota A; Institute of Mathematical and Computer Sciences, University of São Paulo, São Paulo, São Carlos, 13566-590, Brazil. alexlealmota@usp.br.
  • Milani EA; Department of Statistics, Federal University of São Carlos, São Paulo, São Carlos, 13565-905, Brazil. alexlealmota@usp.br.
  • Calsavara VF; Institute of Mathematical and Statistics, Federal University of Goiás, Goiânia, Goiâs, 74690-900, Brazil. alexlealmota@usp.br.
  • Tomazella VLD; Institute of Mathematical and Statistics, Federal University of Goiás, Goiânia, Goiâs, 74690-900, Brazil.
  • Leão J; Department of Epidemiology and Statistics, A.C.Camargo Cancer Center, São Paulo, 01508-010, Brazil.
  • Ramos PL; Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  • Ferreira PH; Department of Statistics, Federal University of São Carlos, São Paulo, São Carlos, 13565-905, Brazil.
  • Louzada F; Department of Statistics, Federal University of Amazonas, Manaus, Amazonas, 69067-005, Brazil.
Lifetime Data Anal ; 27(4): 561-587, 2021 10.
Article em En | MEDLINE | ID: mdl-34331190
In this paper, we propose a novel frailty model for modeling unobserved heterogeneity present in survival data. Our model is derived by using a weighted Lindley distribution as the frailty distribution. The respective frailty distribution has a simple Laplace transform function which is useful to obtain marginal survival and hazard functions. We assume hazard functions of the Weibull and Gompertz distributions as the baseline hazard functions. A classical inference procedure based on the maximum likelihood method is presented. Extensive simulation studies are further performed to verify the behavior of maximum likelihood estimators under different proportions of right-censoring and to assess the performance of the likelihood ratio test to detect unobserved heterogeneity in different sample sizes. Finally, to demonstrate the applicability of the proposed model, we use it to analyze a medical dataset from a population-based study of incident cases of lung cancer diagnosed in the state of São Paulo, Brazil.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fragilidade / Neoplasias Pulmonares Limite: Humans País/Região como assunto: America do sul / Brasil Idioma: En Revista: Lifetime Data Anal Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fragilidade / Neoplasias Pulmonares Limite: Humans País/Região como assunto: America do sul / Brasil Idioma: En Revista: Lifetime Data Anal Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos