Your browser doesn't support javascript.
loading
Watching a hydroperoxyalkyl radical (•QOOH) dissociate.
Hansen, Anne S; Bhagde, Trisha; Moore, Kevin B; Moberg, Daniel R; Jasper, Ahren W; Georgievskii, Yuri; Vansco, Michael F; Klippenstein, Stephen J; Lester, Marsha I.
Afiliação
  • Hansen AS; Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Bhagde T; Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Moore KB; Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
  • Moberg DR; Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
  • Jasper AW; Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
  • Georgievskii Y; Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
  • Vansco MF; Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
  • Klippenstein SJ; Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA. sjk@anl.gov milester@sas.upenn.edu.
  • Lester MI; Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA. sjk@anl.gov milester@sas.upenn.edu.
Science ; 373(6555): 679-682, 2021 08 06.
Article em En | MEDLINE | ID: mdl-34353951
A prototypical hydroperoxyalkyl radical (•QOOH) intermediate, transiently formed in the oxidation of volatile organic compounds, was directly observed through its infrared fingerprint and energy-dependent unimolecular decay to hydroxyl radical and cyclic ether products. Direct time-domain measurements of •QOOH unimolecular dissociation rates over a wide range of energies were found to be in accord with those predicted theoretically using state-of-the-art electronic structure characterizations of the transition state barrier region. Unimolecular decay was enhanced by substantial heavy-atom tunneling involving O-O elongation and C-C-O angle contraction along the reaction pathway. Master equation modeling yielded a fully a priori prediction of the pressure-dependent thermal unimolecular dissociation rates for the •QOOH intermediate-again increased by heavy-atom tunneling-which are required for global models of atmospheric and combustion chemistry.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Science Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Science Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos